ترغب بنشر مسار تعليمي؟ اضغط هنا

In this work, a method is described to extend the iterative Hirshfeld-I method, generally used for molecules, to periodic systems. The implementation makes use of precalculated pseudo-potential based charge density distributions, and it is shown that high quality results are obtained for both molecules and solids, such as ceria, diamond, and graphite. The use of such grids makes the implementation independent of the solid state or quantum chemical code used for studying the system. The extension described here allows for easy calculation of atomic charges and charge transfer in periodic and bulk systems.
The crystal structure of Lanthanum Cerium Oxide (La$_2$Ce$_2$O$_7$) is investigated using textit{ab initio} density functional theory (DFT) calculations. The relative stability of fluorite- and pyrochlore-like structures is studied through comparison of their formation energies. These formation energies show the pyrochlore structure to be favored over the fluorite structure, apparently contradicting the conclusions based on experimental neutron and X-ray diffraction (XRD). By calculating and comparing XRD spectra for a set of differently ordered and random structures, we show that the pyrochlore structure is consistent with diffraction experiments. For these reasons, we suggest the pyrochlore structure as the ground state crystal structure for La$_2$Ce$_2$O$_7$. %we show that among the structures considered in this work, the pyrochlore geometry is clearly favorable over the disordered fluorite geometry.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا