ترغب بنشر مسار تعليمي؟ اضغط هنا

80 - P. Khuntia , F. Bert , P. Mendels 2016
PbCuTe2O6 is a rare example of a spin liquid candidate featuring a three dimensional magnetic lattice. Strong geometric frustration arises from the dominant antiferromagnetic interaction which generates a hyperkagome network of Cu2+ ions although add itional interactions enhance the magnetic lattice connectivity. Through a combination of magnetization measurements and local probe investigation by NMR and muSR down to 20 mK, we provide a robust evidence for the absence of magnetic freezing in the ground state. The local spin susceptibility probed by the NMR shift hardly deviates from the macroscopic one down to 1 K pointing to a homogeneous magnetic system with a low defect concentration. The saturation of the NMR shift and the sublinear power law temperature (T) evolution of the 1/T1 NMR relaxation rate at low T point to a non-singlet ground state favoring a gapless fermionic description of the magnetic excitations. Below 1 K a pronounced slowing down of the spin dynamics is witnessed, which may signal a reconstruction of spinon Fermi surface. Nonetheless, the compound remains in a fluctuating spin liquid state down to the lowest temperature of the present investigation.
75As nuclear magnetic resonance (NMR) experiments were performed on Ba(Fe1-xMnx)2As2 (xMn = 2.5%, 5% and 12%) single crystals. The Fe layer magnetic susceptibility far from Mn atoms is probed by the75As NMR line shift and is found similar to that of BaFe2As2, implying that Mn does not induce charge doping. A satellite line associated with the Mn nearest neighbours (n.n.) of 75As displays a Curie-Weiss shift which demonstrates that Mn carries a local magnetic moment. This is confirmed by the main line broadening typical of a RKKY-like Mn-induced staggered spin polarization. The Mn moment is due to the localization of the additional Mn hole. These findings explain why Mn does not induce superconductivity in the pnictides contrary to other dopants such as Co, Ni, Ru or K.
71 - M. Jeong , F. Bert , P. Mendels 2011
We report 17O NMR measurements in the S=1/2 Cu2+ kagome antiferromagnet Herbertsmithite ZnCu3(OH)6Cl2 down to 45mK in magnetic fields ranging from 2T to 12T. While Herbertsmithite displays a gapless spin-liquid behavior in zero field, we uncover an i nstability toward a spin-solid phase at sub-kelvin temperature induced by an applied magnetic field. The latter phase shows largely suppressed moments $lesssim 0.1muB$ and gapped excitations. The H-T phase diagram suggests the existence of a quantum critical point at the small but finite magnetic field mu0 Hc=1.55(25)T. We discuss this finding in light of the perturbative Dzyaloshinskii-Moriya interaction which was theoretically proposed to sustain a quantum critical regime for the quantum kagome Heisenberg antiferromagnet model.
We report muSR experiments on Mg{x}Cu{4-x}(OH)6Cl2 with x sim 1, a new material isostructural to Herbertsmithite exhibiting regular kagome planes of spin 1/2 (Cu^{2+}), and therefore a candidate for a spin liquid ground state. We evidence the absence of any magnetic ordering down to 20 mK (sim J/10^4). We investigate in detail the spin dynamics on well characterized samples in zero and applied longitudinal fields and propose a low T defect based interpretation to explain the unconventional dynamics observed in the quantum spin liquid phase.
71 - A. Olariu , P. Mendels , F. Bert 2009
We report a muSR study of LiCrO2, which has a magnetic lattice made up of a stacking of triangular Heisenberg antiferromagnetic (Cr3+, S = 3/2) layers. A static magnetically ordered state is observed below the transition temperature T_N = 62 K, while the expected peak of the relaxation rate is slightly shifted downward by a few kelvins below T_N. We draw a comparison with the isostructural compound NaCrO2, where an exotic broad fluctuating regime has been observed [A. Olariu, P. Mendels, F. Bert, B. G. Ueland, P. Schiffer, R. F. Berger, and R. J. Cava, Phys. Rev. Lett. 97, 167203 (2006)] and was suggested to originate from topological excitations of the triangular lattice. Replacing Na by Li strongly narrows the exotic fluctuating regime formerly observed in NaCrO2, which we attribute to a more pronounced inter-plane coupling in LiCrO2.
92 - A. Olariu , P. Mendels , F. Bert 2006
We report magnetization, specific heat, muon spin rotation and Na NMR measurements on the S=3/2 rhombohedrally stacked Heisenberg antiferromagnet NaCrO2. This compound appears to be an ideal candidate for the study of triangular Heisenberg antiferrom agnets with very weak interlayer coupling. While specific heat and magnetization measurements indicate the occurrence of a transition in the range 40-46 K, both muon spin rotation and NMR reveal a fluctuating regime extending well below T_c, with a peak of relaxation rate 1/T1 around 30 K. This novel finding is discussed within the context of excitations in the triangular Heisenberg antiferromagnets.
128 - F. Bert , P. Mendels , A. Olariu 2006
MuSR experiments have been performed on powder sample of the ordered spin ice Tb$_2$Sn$_2$O$_7$ pyrochlore compound. At base temperature (T=35mK) the muon relaxation is found to be of dynamical nature which demonstrates that strong fluctuations persi st below the ferromagnetic transition (T_C=0.87K). Hints of long range order appear as oscillations of the muon polarization when an external field is applied and also as a hysteretic behavior below T_C. We propose a dynamical and strongly correlated scenario where dynamics results from fluctuation of large spin clusters with the ordered spin ice structure.
128 - F. Bert , D. Bono , P. Mendels 2005
Volborthite compound is one of the very few realizations of S=1/2 quantum spins on a highly frustrated kagome-like lattice. Low-T SQUID measurements reveal a broad magnetic transition below 2K which is further confirmed by a peak in the 51V nuclear s pin relaxation rate (1/T1) at 1.4K$pm$0.2K. Through 51V NMR, the ground state (GS) appears to be a mixture of different spin configurations, among which 20% correspond to a well defined short range order, possibly of the $sqrt{3} times sqrt{3}$ type. While the freezing involve all the Cu$^{2+}$ spins, only 40% of the copper moment is actually frozen which suggests that quantum fluctuations strongly renormalize the GS.
55 - L. Limot , P. Mendels , G. Collin 2001
We present an extensive gallium NMR study of the geometrically frustrated kagome bi-layer compound SrCr_(9p)Ga_(12-9p)O_(19) (Cr^3+, S=3/2) over a broad Cr-concentration range (.72<p<.95). This allows us to probe locally the kagome bi-layer susceptib ility and separate the intrinsic properties due to the geometric frustration from those related to the site dilution. Our major findings are: 1) The intrinsic kagome bi-layer susceptibility exhibits a maximum in temperature at 40-50 K and is robust to a dilution as high as ~20%. The maximum reveals the development of short range antiferromagnetic correlations; 2) At low-T, a highly dynamical state induces a strong wipe-out of the NMR intensity, regardless of dilution; 3) The low-T upturn observed in the macroscopic susceptibility is associated to paramagnetic defects which stem from the dilution of the kagome bi-layer. The low-T analysis of the NMR lineshape suggests that the defect can be associated with a staggered spin-response to the vacancies on the kagome bi-layer. This, altogether with the maximum in the kagome bi-layer susceptibility, is very similar to what is observed in most low-dimensional antiferromagnetic correlated systems; 4) The spin glass-like freezing observed at T_g=2-4 K is not driven by the dilution-induced defects.
56 - L. Limot , P. Mendels , G. Collin 2000
We report a high-$T$ Ga-NMR study in the kagome-based antiferromagnetic compound SrCr$_{9p}$Ga$_{12-9p}$O$_{19}$ ($.81leq pleq .96$), and present a refined mean-field analysis of the high T local NMR susceptibility of Cr frustrated moments. We find t hat the intralayer kagome coupling is $J=86(6)$ K, and the interlayer coupling through non-kagome Cr moments is $J^{prime }=69(7)$ K. The $J^{prime}/J=0.80(1)$ ratio confirms the common belief that the frustrated entity is a pyrochlore slab.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا