ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct evidence for a dynamical ground state in the highly frustrated Tb$_2$Sn$_2$O$_7$ pyrochlore

129   0   0.0 ( 0 )
 نشر من قبل Fabrice Bert
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

MuSR experiments have been performed on powder sample of the ordered spin ice Tb$_2$Sn$_2$O$_7$ pyrochlore compound. At base temperature (T=35mK) the muon relaxation is found to be of dynamical nature which demonstrates that strong fluctuations persist below the ferromagnetic transition (T_C=0.87K). Hints of long range order appear as oscillations of the muon polarization when an external field is applied and also as a hysteretic behavior below T_C. We propose a dynamical and strongly correlated scenario where dynamics results from fluctuation of large spin clusters with the ordered spin ice structure.



قيم البحث

اقرأ أيضاً

Reentrance, the return of a system from an ordered phase to a previously encountered less-ordered one as a controlled parameter is continuously varied, is a recurring theme found in disparate physical systems, from condensed matter to black holes. Wh ile diverse in its many incarnations and generally unsuspected, the cause of reentrance at the microscopic level is often not investigated thoroughly. Here, through detailed characterization and theoretical modeling, we uncover the microscopic mechanism behind reentrance in the strongly frustrated pyrochlore antiferromagnet Er$_2$Sn$_2$O$_7$. Taking advantage of the recent advance in rare earth stannate single crystal synthesis, we use heat capacity measurements to expose that Er$_2$Sn$_2$O$_7$ exhibits multiple instances of reentrance in its magnetic field $B$ vs. temperature $T$ phase diagram for magnetic fields along three cubic high symmetry directions. Through classical Monte Carlo simulations, mean field theory and classical linear spin-wave expansions, we argue that the origins of the multiple occurrences of reentrance observed in Er$_2$Sn$_2$O$_7$ are linked to soft modes. Depending on the field direction, these arise either from a direct $T=0$ competition between the field-evolved ground states, or from a field-induced enhancement of the competition with a distinct zero-field antiferromagnetic phase. In both scenarios, the phase competition enhances thermal fluctuations which entropically stabilize a specific ordered phase. This results in an increased transition temperature for certain field values and thus the reentrant behavior. Our work represents a detailed examination into the mechanisms responsible for reentrance in a frustrated magnet and may serve as a template for the interpretation of reentrant phenomena in other physical systems.
The charge ordered structure of ions and vacancies characterizing rare-earth pyrochlore oxides serves as a model for the study of geometrically frustrated magnetism. The organization of magnetic ions into networks of corner-sharing tetrahedra gives r ise to highly correlated magnetic phases with strong fluctuations, including spin liquids and spin ices. It is an open question how these ground states governed by local rules are affected by disorder. In the pyrochlore Tb$_2$Hf$_2$O$_7$, we demonstrate that the vicinity of the disordering transition towards a defective fluorite structure translates into a tunable density of anion Frenkel disorder while cations remain ordered. Quenched random crystal fields and disordered exchange interactions can therefore be introduced into otherwise perfect pyrochlore lattices of magnetic ions. We show that disorder can play a crucial role in preventing long-range magnetic order at low temperatures, and instead induces a strongly-fluctuating Coulomb spin liquid with defect-induced frozen magnetic degrees of freedom.
331 - A. M. Hallas , W. Jin , J. Gaudet 2020
We present a comprehensive experimental and theoretical study of the pyrochlore Tb$_2$Ge$_2$O$_7$, an exemplary realization of a material whose properties are dominated by competition between magnetic dipolar and electric quadrupolar correlations. Th e dipolar and quadrupolar correlations evolve over three distinct regimes that we characterize via heat capacity, elastic and inelastic neutron scattering. In the first regime, above $T^*=1.1$ K, significant quadrupolar correlations lead to an intense inelastic mode that cannot be accounted for within a scenario with solely magnetic dipole-dipole correlations. The onset of extended dipole correlations occurs in the intermediate regime, between $T^*=1.1$ K and $T_c = 0.25$ K, with the formation of a collective paramagnetic state characterized by extended ferromagnetic canted spin ice domains. Here, long-range order is impeded not only by the usual frustration operating in classical spin ice systems, but also by a competition between dipolar and quadrupolar correlations. Finally, in the lowest temperature regime, below $T_c=0.25$ K, there is an abrupt and significant increase in the dipole ordered moment. The majority of the ordered moment remains tied up in the ferromagnetic spin ice-like state, but an additional $mathbf{k}=(0,0,1)$ antiferromagnetic order parameter also develops. Simultaneously, the spectral weight of the inelastic mode, which is a proxy for the quadrupolar correlations, is observed to drop, indicating that dipole order ultimately wins out. Tb$_2$Ge$_2$O$_7$ is therefore a remarkable platform to study intertwined dipolar and quadrupolar correlations in a magnetically frustrated system and provides important insights into the physics of the whole family of terbium pyrochlores.
206 - L. Yin , J. S. Xia , Y. Takano 2012
By means of ac magnetic-susceptibility measurements, we find evidence for a new magnetic phase of Tb$_2$Ti$_2$O$_7$ below about 140 mK in zero magnetic field. In magnetic fields parallel to [111], this phase---exhibiting frequency- and amplitude-depe ndent susceptibility and an extremely slow spin dynamics---extends to about 70 mT, at which it gives way to another phase. The field dependence of the susceptibility of this second phase, which extends to about 0.6 T, indicates the presence of a weak magnetization plateau below 50 mK, as has been predicted by a single-tetrahedron four-spin model, giving support to the underlying proposal that the disordered low-field ground state of Tb$_2$Ti$_2$O$_7$ is a quantum spin ice.
We report low temperature specific heat and muon spin relaxation/rotation ($mu$SR) measurements on both polycrystalline and single crystal samples of the pyrochlore magnet Yb$_2$Ti$_2$O$_7$. This system is believed to possess a spin Hamiltonian suppo rting a Quantum Spin Ice (QSI) ground state and to display sample variation in its low temperature heat capacity. Our two samples exhibit extremes of this sample variation, yet our $mu$SR measurements indicate a similar disordered low temperature state down to 16 mK in both. We report little temperature dependence to the spin relaxation and no evidence for ferromagnetic order, in contrast to recent reports by Chang emph{et al.} (Nat. Comm. {bf 3}, 992 (2012)). Transverse field (TF) $mu$SR measurements show changes in the temperature dependence of the muon Knight shift which coincide with heat capacity anomalies. We are therefore led to propose that Yb$_2$Ti$_2$O$_7$ enters a hidden order ground state below $T_csim265$ mK where the nature of the ordered state is unknown but distinct from simple long range order.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا