ترغب بنشر مسار تعليمي؟ اضغط هنا

64 - X. Cao , Y. Lu , P. Hansmann 2021
We present a tree tensor-network impurity solver suited for general multiorbital systems. The network is constructed to efficiently capture the entanglement structure and symmetry of an impurity problem. The solver works directly on the real-time/fre quency axis and generates spectral functions with energy-independent resolution of the order of one percent of the correlated bandwidth. Combined with an optimized representation of the impurity bath, it efficiently solves self-consistent dynamical mean-field equations and calculates various dynamical correlation functions for systems with off-diagonal Greens functions. For the archetypal correlated Hunds metal Sr$_2$RuO$_4$, we show that both the low-energy quasiparticle spectra related to the van Hove singularity and the high-energy atomic multiplet excitations can be faithfully resolved. In particular, we show that while the spin-orbit coupling has only minor effects on the orbital-diagonal one-particle spectral functions, it has a more profound impact on the low-energy spin and orbital response functions.
101 - Y. Lu , X. Cao , P. Hansmann 2019
We extend a previously proposed rotation and truncation scheme to optimize quantum Anderson impurity calculations with exact diagonalization [PRB 90, 085102 (2014)] to density-matrix renormalization group (DMRG) calculations. The method reduces the s olution of a full impurity problem with virtually unlimited bath sites to that of a small subsystem based on a natural impurity orbital basis set. The later is solved by DMRG in combination with a restricted-active-space truncation scheme. The method allows one to compute Greens functions directly on the real frequency or time axis. We critically test the convergence of the truncation scheme using a one-band Hubbard model solved in the dynamical mean-field theory. The projection is exact in the limit of both infinitely large and small Coulomb interactions. For all parameter ranges the accuracy of the projected solution converges exponentially to the exact solution with increasing subsystem size.
Soft x-ray linear and circular dichroism (XLD, XMCD) experiments at the Ce M$_{4,5}$ edges are being used to determine the energy scales characterizing the Ce $4f$ degrees of freedom in the ultrathin ordered surface intermetallic CeAg$_x$/Ag(111). We find that all relevant interactions, i. e. Kondo scattering, crystal field splitting and magnetic exchange coupling occur on small scales. Our study demonstrates the usefulness of combining x-ray absorption experiments probing linear and circular dichroism owing to their strong sensitivity for anisotropies in both charge distribution and paramagnetic response, respectively.
Using a recently developed impurity solver we exemplify how dynamical mean field theory captures band excitations, resonances, edge singularities and excitons in core level x-ray absorption (XAS) and core level photo electron spectroscopy (cPES) on m etals, correlated metals and Mott insulators. Comparing XAS at different values of the core-valence interaction shows how the quasiparticle peak in the absence of core-valence interactions evolves into a resonance of similar shape, but different origin. Whereas XAS is rather insensitive to the metal insulator transition, cPES can be used, due to nonlocal screening, to measure the amount of local charge fluctuation.
274 - A. Toschi , R. Arita , P. Hansmann 2011
We have calculated the local magnetic susceptibility of one of the prototypical Fe-based superconductors (LaFeAsO) by means of the local density approximation + dynamical mean field theory as a function of both (imaginary) time and real frequencies w ith and without vertex corrections. Vertex corrections are essential for obtaining the correct $omega$-dependence, in particular a pronounced low-energy peak at $omega sim 0.2 $eV, which constitutes the hallmark of the dynamical screening of a large instantaneous magnetic moment on the Fe atoms. In experiments, however, except for the case of x-ray absorption spectroscopy (XAS), the magnetic moment or the susceptibility represent typically the average over long time scales. In this respect, the frequency range of typical neutron experiments would be too limited to directly estimate the magnitude of the short-time moment.
We have investigated charge dynamics and electronic structures for single crystals of metallic layered nickelates, R2-xSrxNiO4 (R=Nd, Eu), isostructural to La2-xSrxCuO4. Angle-resolved photoemission spectroscopy on the barely-metallic Eu0.9Sr1.1NiO4 (R=Eu, x=1.1) has revealed a large hole surface of x2-y2 character with a high-energy pseudogap of the same symmetry and comparable magnitude with those of underdoped (x<0.1) cuprates, although the antiferromagnetic interactions are one order of magnitude smaller. This finding strongly indicates that the momentum-dependent pseudogap feature in the layered nickelate arises from the real-space charge correlation.
102 - F. Rodolakis 2010
The changes in the electronic structure of V2O3 across the metal-insulator transition induced by temperature, doping and pressure are identified using high resolution x-ray absorption spectroscopy at the V pre K-edge. Contrary to what has been taken for granted so far, the metallic phase reached under pressure is shown to differ from the one obtained by changing doping or temperature. Using a novel computational scheme, we relate this effect to the role and occupancy of the a1g orbitals. This finding unveils the inequivalence of different routes across the Mott transition in V2O3
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا