ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a multi-instrument spectroscopic analysis of the unique Li/Na-rich giant star 25664 in Omega Centauri using spectra acquired with FLAMES-GIRAFFE, X-SHOOTER, UVES and HARPS. Li and Na abundances have been derived from the UVES spectrum usin g transitions weakly sensitive to non-local thermodynamic equilibrium and assumed isotopic ratio. This new analysis confirms the surprising Li and Na abundances of this star (A(Li) =+2.71+-0.07 dex, [Na/Fe]=+1.00+-0.05 dex). Additionally, we provide new pieces of evidence for its chemical characterisation. The 12C/13C isotopic ratio (15+-2) shows that this star has not yet undergone the extra-mixing episode usually associated with the red giant branch bump. Therefore, we can rule out the scenario of efficient deep extra-mixing during the red giant branch phase envisaged to explain the high Li and Na abundances. Also, the star exhibits high abundances of both C and N ([C/Fe]=+0.45+-0.16 dex and [N/Fe]=+0.99+-0.20 dex), not compatible with the typical C-N anticorrelation observed in globular cluster stars. We found evidence of a radial velocity variability in 25664, suggesting that the star could be part of a binary system, likely having accreted material from a more massive companion when the latter was evolving in the AGB phase. Viable candidates for the donor star are AGB stars with 3-4 Msun and super-AGB stars (~7-8 Msun), both able to produce Li- and Na-rich material. Alternatively, the star could be formed from the pure ejecta of a super-AGB stars, before the dilution with primordial gas occurs.
We analysed red giant branch stars in 16 Galactic globular clusters, computing their atmospheric parameters both from the photometry and from excitation and ionisation balances. The spectroscopic parameters are lower than the photometric ones and thi s discrepancy increases decreasing the metallicity, reaching, at [Fe/H]~-2.5 dex, differences of ~350 K in effective temperature and ~1 dex in surface gravity. We demonstrate that the spectroscopic parameters are inconsistent with the position of the stars in the colour-magnitude diagram, providing too low temperatures and gravities, and predicting that the stars are up to about 2.5 magnitudes brighter than the observed magnitudes. The parameter discrepancy is likely due to the inadequacies of the adopted physics, in particular the assumption of 1-dimensional geometry can be the origin of the observed slope between iron abundances and excitation potential that leads to low temperatures. However, the current modelling of 3D/NLTE radiative transfer for giant stars seems to be not able to totally erase this slope. We conclude that the spectroscopic parameters are wrong for metallicity lower than -1.5 dex and for these red giant stars photometric temperatures and gravities should be adopted. We provide a simple relation to correct the spectroscopic temperatures in order to put them onto a photometric scale.
We present high-resolution and high-quality UVES spectroscopic data of the metal-poor double-lined spectroscopic binary CS 22876--032 ([Fe/H] $sim -3.7$ dex), with the goal to derive the $^6$Li/$^7$Li isotopic ratio by analysing the ion{Li}{i} $lambd a$~670.8~nm doublet. We coadd all 28 useful spectra normalised and corrected for radial velocity to the rest frame of the primary star. We fit the Li profile with a grid of the 3D-NLTE synthetic spectra, to take into account the line profile asymmetries induced by stellar convection, and perform Monte Carlo simulations to evaluate the uncertainty of the fit of the Li line profile. We check that the veiling factor does not affect the derived isotopic ratio, $^6$Li/$^7$Li, and only modifies the Li abundance, A(Li), by about 0.15~dex. The best fit of the Li profile of the primary star provides A(Li)~$ = 2.17 pm 0.01$~dex and $^6$Li/$^7$Li~$=8^{+2}_{-5}$% at 68% confidence level. In addition, we improve the Li abundance of the secondary star at A(Li)~$= 1.55 pm 0.04$~dex, which is about 0.6~dex lower than that of the primary star. The analysis of the Li profile of the primary star is consistent with no detection of $^6$Li and provides an upper-limit to the isotopic ratio of $^6$Li/$^7$Li~$< 10$% at this very low metallicity, about 0.5~dex lower in metallicity than previous attempts for detection of $^6$Li in extremely metal poor stars. These results do not solve or worsen the cosmological $^7$Li problem, nor support the need for non standard $^6$Li production in the early Universe.
Our current understanding of the chemical evolution of the Universe is that a first generation of stars was formed out of primordial material, completely devoid of metals (Pop III stars). This first population of stars comprised massive stars that ex ploded as supernovae disseminating the metals they synthesised in the interstellar medium. These massive stars are long dead and cannot be observed in the local Universe. Among very metal poor stars (metallicity below -2.0) we expect to find the direct descendants of these pristine metal factories. The chemical composition of these stars provides us indirect information on the nature of the Pop III stars, their masses, luminosities and mode of explosion. The constraints are stronger if the chemical inventory is more complete, more chemical elements and isotopic ratios are measured for each star. Unfortunately the lower the metallicity of the star, the weaker the lines. Access to the space UV spectral range gives us crucial supplementary information. To start with, it allows access to some very strong Fe lines that may allow to measure the abundance of this element in stars for which this was not possible from the ground-accessible UV spectra. The number of such stars is steadily increasing. Next the UV range allows us to measure elements that cannot be measured from ground-based spectra like P, Ge, As, Se, Cd, Te, Lu, Os, Ir, Pt, Au. In addition it is fundamental for measuring other elements that can be accessed from earth, but with great difficulty, like C, S, Cu, Zn, Pb. The Hubble space telescope, with its limited collecting power made this possible only for very few stars. Old metal poor stars are cool, of spectral types F,G,K, and their UV flux is low. The availability of a UV high resolution spectrograph fed by a large area space telescope will open an unprecedented window on the early evolution of our Galaxy.
We will study the formation history of the Milky Way, and the earliest phases of its chemical enrichment, with a sample of more than 1.5 million stars at high galactic latitude. Elemental abundances of up to 20 elements with a precision of better tha n 0.2 dex will be derived for these stars. The sample will include members of kinematically coherent substructures, which we will associate with their possible birthplaces by means of their abundance signatures and kinematics, allowing us to test models of galaxy formation. Our target catalogue is also expected to contain 30,000 stars at a metallicity of less than one hundredth that of the Sun. This sample will therefore be almost a factor of 100 larger than currently existing samples of metal-poor stars for which precise elemental abundances are available (determined from high-resolution spectroscopy), enabling us to study the early chemical evolution of the Milky Way in unprecedented detail.
Measurable amounts of Be could have been synthesised primordially if the Universe were non-homogeneous or in the presence of late decaying relic particles. We investigate the Be abundance in the extremely metal-poor star 2MASS J1808-5104 ([Fe/H]=--3. 84) with the aim of constraining inhomogeneities or the presence of late decaying particles. High resolution, high signal-to-noise ratio UV spectra were acquired at ESO with the Kueyen 8.2 m telescope and the UVES spectrograph. Abundances were derived using several model atmospheres and spectral synthesis code. We measured log(Be/H) = -14.3 from a spectrum synthesis of the region of the Be line. Using a conservative approach, however we adopted an upper limit two times higher, i.e. log(Be/H) < -14.0. We measured the O abundance from UV OH lines and find [O/H]=--3.46 after a 3D correction. Our observation reinforces the existing upper limit on primordial Be. There is no observational indication for a primordial production of Be. This places strong constraints on the properties of putative relic particles. This result also supports the hypothesis of a homogeneous Universe, at the time of nucleosynthesis. Surprisingly, our upper limit of the Be abundance is well below the Be measurements in stars of similar [O/H]. This may be evidence that the Be-O relation breaks down in the early Galaxy, perhaps due to the escape of spallation products from the gas clouds in which stars such as 2MASS J1808-5104 have formed.
We report the discovery of two Li-rich giant stars (fainter than the red giant branch bump) in the stellar system Omega Centauri using GIRAFFE-FLAMES spectra. These two stars have A(Li)=1.65 and 2.40 dex and they belong to the main population of the system ([Fe/H]=--1.70 and --1.82, respectively). The most Li-rich of them (#25664) has [Na/Fe]=+0.87 dex that is ~0.5 dex higher than those measured in the most Na-rich stars of Omega Centauri of similar metallicity. The chemical abundances of Li and Na in #25664 can be qualitatively explained by deep extra mixing efficient within the star during its RGB evolution or by super-asymptotic giant branch (AGB) stars with masses between ~7 and 8 Msun. In the latter scenario, this Li-Na-rich star could be formed from the pure ejecta of super-AGB stars before the dilution with pristine material occurs, or, alternatively, be part of a binary system and experienced mass transfer from the companion when this latter evolved through the super-AGB phase. In both these cases, the chemical composition of this unique object could allow to look for the first time at the chemical composition of the gas processed in the interior of super-AGB stars.
Detailed chemical abundances of Galactic stars are needed in order to improve our knowledge of the formation and evolution of our galaxy, the Milky Way. We took advantage of the GIANO archive spectra to select a sample of Galactic disc stars in order to derive their chemical inventory and to compare the abundances we derived from these infrared spectra to the chemical pattern derived from optical spectra. We analysed high-quality spectra of 40 stars observed with GIANO. We derived the stellar parameters from the photometry and the Gaia data-release 2 (DR2) parallax; the chemical abundances were derived with the code MyGIsFOS. For a subsample of stars we compared the chemical pattern derived from the GIANO spectra with the abundances derived from optical spectra. We derived P abundances for all 40 stars, increasing the number of Galactic stars for which phosphorus abundance is known. We could derive abundances of 14 elements, 8 of which are also derived from optical spectra. The comparison of the abundances derived from infrared and optical spectra is very good. The chemical pattern of these stars is the one expected for Galactic disc stars and is in agreement with the results from the literature. GIANO is providing the astronomical community with an extremely useful instrument, able to produce spectra with high resolution and a wide wavelength range in the infrared.
Extremely metal-poor stars are keys to understand the early evolution of our Galaxy. The ESO large programme TOPoS has been tailored to analyse a new set of metal-poor turn-off stars, whereas most of the previously known extremely metal-poor stars ar e giant stars. Sixty five turn-off stars (preselected from SDSS spectra) have been observed with the X-Shooter spectrograph at the ESO VLT Unit Telescope 2, to derive accurate and detailed abundances of magnesium, silicon, calcium, iron, strontium and barium. We analysed medium-resolution spectra (R ~ 10 000) obtained with the ESO X-Shooter spectrograph and computed the abundances of several alpha and neutron-capture elements using standard one-dimensional local thermodynamic equilibrium (1D LTE) model atmospheres. Our results confirms the super-solar [Mg/Fe] and [Ca/Fe] ratios in metal-poor turn-off stars as observed in metal-poor giant stars. We found a significant spread of the [alpha/Fe] ratios with several stars showing sub-solar [Ca/Fe] ratios. We could measure the abundance of strontium in 12 stars of the sample, leading to abundance ratios [Sr/Fe] around the Solar value. We detected barium in two stars of the sample. One of the stars (SDSS J114424-004658) shows both very high [Ba/Fe] and [Sr/Fe] abundance ratios (>1 dex).
95 - P. Bonifacio 2018
The Gaia Data Release 2 provides a parallax of 0.734+/-0.073 mas for SDSS J102915+172927, currently the most metal-poor known object. This parallax implies that it is dwarf star, ruling out the scenario that it is a subgiant. The subgiant scenario ha d as a corollary that the star had been formed in a medium highly enriched in C, thus making line cooling efficient during the collapse, that was also highly enriched in Fe by Type Ia SNe. This scenario can also now be ruled out for this star, reinforcing the need of dust cooling and fragmentation to explain its formation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا