ترغب بنشر مسار تعليمي؟ اضغط هنا

The discovery of a Li-Na-rich giant star in Omega Centauri: formed from the pure ejecta of super-AGB stars?

264   0   0.0 ( 0 )
 نشر من قبل Alessio Mucciarelli
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of two Li-rich giant stars (fainter than the red giant branch bump) in the stellar system Omega Centauri using GIRAFFE-FLAMES spectra. These two stars have A(Li)=1.65 and 2.40 dex and they belong to the main population of the system ([Fe/H]=--1.70 and --1.82, respectively). The most Li-rich of them (#25664) has [Na/Fe]=+0.87 dex that is ~0.5 dex higher than those measured in the most Na-rich stars of Omega Centauri of similar metallicity. The chemical abundances of Li and Na in #25664 can be qualitatively explained by deep extra mixing efficient within the star during its RGB evolution or by super-asymptotic giant branch (AGB) stars with masses between ~7 and 8 Msun. In the latter scenario, this Li-Na-rich star could be formed from the pure ejecta of super-AGB stars before the dilution with pristine material occurs, or, alternatively, be part of a binary system and experienced mass transfer from the companion when this latter evolved through the super-AGB phase. In both these cases, the chemical composition of this unique object could allow to look for the first time at the chemical composition of the gas processed in the interior of super-AGB stars.



قيم البحث

اقرأ أيضاً

We present a multi-instrument spectroscopic analysis of the unique Li/Na-rich giant star 25664 in Omega Centauri using spectra acquired with FLAMES-GIRAFFE, X-SHOOTER, UVES and HARPS. Li and Na abundances have been derived from the UVES spectrum usin g transitions weakly sensitive to non-local thermodynamic equilibrium and assumed isotopic ratio. This new analysis confirms the surprising Li and Na abundances of this star (A(Li) =+2.71+-0.07 dex, [Na/Fe]=+1.00+-0.05 dex). Additionally, we provide new pieces of evidence for its chemical characterisation. The 12C/13C isotopic ratio (15+-2) shows that this star has not yet undergone the extra-mixing episode usually associated with the red giant branch bump. Therefore, we can rule out the scenario of efficient deep extra-mixing during the red giant branch phase envisaged to explain the high Li and Na abundances. Also, the star exhibits high abundances of both C and N ([C/Fe]=+0.45+-0.16 dex and [N/Fe]=+0.99+-0.20 dex), not compatible with the typical C-N anticorrelation observed in globular cluster stars. We found evidence of a radial velocity variability in 25664, suggesting that the star could be part of a binary system, likely having accreted material from a more massive companion when the latter was evolving in the AGB phase. Viable candidates for the donor star are AGB stars with 3-4 Msun and super-AGB stars (~7-8 Msun), both able to produce Li- and Na-rich material. Alternatively, the star could be formed from the pure ejecta of a super-AGB stars, before the dilution with primordial gas occurs.
We have serendipitously identified the first lithium-rich giant star located close to the red giant branch bump in a globular cluster. Through intermediate-resolution FLAMES spectra we derived a lithium abundance of A(Li)=2.55 (assuming local thermod ynamical equilibrium), which is extremely high considering the stars evolutionary stage. Kinematic and photometric analysis confirm the object as a member of the globular cluster NGC 362. This is the fourth Li-rich giant discovered in a globular cluster but the only one known to exist at a luminosity close to the bump magnitude. The three previous detections are clearly more evolved, located close to, or beyond the tip of their red giant branch. Our observations are able to discard the accretion of planets/brown dwarfs, as well as an enhanced mass-loss mechanism as a formation channel for this rare object. Whilst the star sits just above the cluster bump luminosity, its temperature places it towards the blue side of the giant branch in the colour-magnitude diagram. We require further dedicated observations to unambiguously identify the star as a red giant: we are currently unable to confirm whether Li production has occurred at the bump of the luminosity function or if the star is on the pre zero-age horizontal branch. The latter scenario provides the opportunity for the star to have synthesised Li rapidly during the core helium flash or gradually during its red giant branch ascent via some extra mixing process.
We present Li, Na, Al and Fe abundances of 199 lower red giant branch stars members of the stellar system Omega Centauri, using high-resolution spectra acquired with FLAMES at the Very Large Telescope. The A(Li) distribution is peaked at A(Li) ~ 1 de x with a prominent tail toward lower values. The peak of the distribution well agrees with the lithium abundances measured in lower red giant branch stars in globular clusters and Galactic field stars. Stars with A(Li) ~ 1 dex are found at metallicities lower than [Fe/H] ~ -1.3 dex but they disappear at higher metallicities. On the other hand, Li-poor stars are found at all the metallicities. The most metal-poor stars exhibit a clear Li-Na anticorrelation, with about 30% of the sample with A(Li) lower than ~ 0.8 dex, while in normal globular clusters these stars represent a small fraction. Most of the stars with [Fe/H] > -1.6 dex are Li-poor and Na-rich. The Li depletion measured in these stars is not observed in globular clusters with similar metallicities and we demonstrate that it is not caused by the proposed helium enhancements and/or young ages. Hence, these stars formed from a gas already depleted in lithium. Finally, we note that Omega Centauri includes all the populations (Li-normal/Na-normal, Li-normal/Na-rich and Li-poor/Na-rich stars) observed, to a lesser extent, in mono-metallic GCs.
[Abbreviated] We have investigated the color-magnitude diagram of Omega Centauri and find that the blue main sequence (bMS) can be reproduced only by models that have a of helium abundance in the range Y=0.35-$0.40. To explain the faint subgiant bran ch of the reddest stars (MS-a/RG-a sequence), isochrones for the observed metallicity ([Fe/H]approx0.7) appear to require both a high age (~13Gyr) and enhanced CNO abundances ([CNO/Fe]approx0.9$). Y~0.35 must also be assumed in order to counteract the effects of high CNO on turnoff colors, and thereby to obtain a good fit to the relatively blue turnoff of this stellar population. This suggest a short chemical evolution period of time (<1Gyr) for Omega Cen. Our intermediate-mass (super-)AGB models are able to reproduce the high helium abundances, along with [N/Fe]~2 and substantial O depletions if uncertainties in the treatment of convection are fully taken into account. These abundance features distinguish the bMS stars from the dominant [Fe/H] $approx1.7$ population. The most massive super-AGB stellar models (M_zams>=6.8M_sun, M_He,core>=1.245M_sun) predict too large N-enhancements, which limits their role in contributing to the extreme populations. We show quantitatively that highly He- and N-enriched AGB ejecta have particularly efficient cooling properties. Based on these results and on the reconstruction of the orbit of Omega Cen with respect to the Milky Way we propose the galactic plane passage gas purging scenario for the chemical evolution of this cluster. Our model addresses the formation and properties of the bMS population (including their central location in the cluster). We follow our model descriptively through four passage events, which could explain not only some key properties of the bMS, but also of the MS-a/RGB-a and the s-enriched stars.
225 - B. P. Hema 2020
The helium-enriched (He-enriched) metal-rich red giants of Omega Centauri, discovered by Hema and Pandey using the low-resolution spectra from the Vainu Bappu Telescope (VBT) and confirmed by the analyses of the high-resolution spectra obtained from the HRS-South African Large Telescope (SALT) for LEID 34225 and LEID 39048, are reanalysed here to determine their degree of He-enhancement/hydrogen-deficiency (H-deficiency). The observed MgH band combined with model atmospheres with differing He/H ratios are used for the analyses. The He/H ratios of these two giants are determined by enforcing the fact that the derived Mg abundances from the MgI lines and from the subordinate lines of the MgH band must be same for the adopted model atmosphere. The estimated He/H ratios for LEID 34225 and LEID 39048 are 0.15+/-0.04 and 0.20+/-0.04, respectively, whereas the normal He/H ratio is 0.10. Following the same criteria for the analyses of the other two comparison stars (LEID 61067 and LEID 32169), a normal He/H ratio of 0.10 is obtained. The He/H ratio of 0.15-0.20 corresponds to a mass fraction of helium (Z(He)=Y) of about 0.375-0.445. The range of helium enhancement and the derived metallicity of the program stars are in line with those determined for Omega Cen blue main-sequence stars. Hence, our study provides the missing link for the evolutionary track of the metal-rich helium-enhanced population of Omega Centuari. This research work is the very first spectroscopic determination of the amount of He-enhancement in the metal-rich red giants of Omega Centauri using the MgI and MgH lines.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا