ترغب بنشر مسار تعليمي؟ اضغط هنا

Continual learning is the problem of learning and retaining knowledge through time over multiple tasks and environments. Research has primarily focused on the incremental classification setting, where new tasks/classes are added at discrete time inte rvals. Such an offline setting does not evaluate the ability of agents to learn effectively and efficiently, since an agent can perform multiple learning epochs without any time limitation when a task is added. We argue that online continual learning, where data is a single continuous stream without task boundaries, enables evaluating both information retention and online learning efficacy. In online continual learning, each incoming small batch of data is first used for testing and then added to the training set, making the problem truly online. Trained models are later evaluated on historical data to assess information retention. We introduce a new benchmark for online continual visual learning that exhibits large scale and natural distribution shifts. Through a large-scale analysis, we identify critical and previously unobserved phenomena of gradient-based optimization in continual learning, and propose effective strategies for improving gradient-based online continual learning with real data. The source code and dataset are available in: https://github.com/IntelLabs/continuallearning.
101 - Hexiang Hu , Ozan Sener , Fei Sha 2020
Continual learning systems will interact with humans, with each other, and with the physical world through time -- and continue to learn and adapt as they do. An important open problem for continual learning is a large-scale benchmark that enables re alistic evaluation of algorithms. In this paper, we study a natural setting for continual learning on a massive scale. We introduce the problem of personalized online language learning (POLL), which involves fitting personalized language models to a population of users that evolves over time. To facilitate research on POLL, we collect massive datasets of Twitter posts. These datasets, Firehose10M and Firehose100M, comprise 100 million tweets, posted by one million users over six years. Enabled by the Firehose datasets, we present a rigorous evaluation of continual learning algorithms on an unprecedented scale. Based on this analysis, we develop a simple algorithm for continual gradient descent (ConGraD) that outperforms prior continual learning methods on the Firehose datasets as well as earlier benchmarks. Collectively, the POLL problem setting, the Firehose datasets, and the ConGraD algorithm enable a complete benchmark for reproducible research on web-scale continual learning.
Human communication takes many forms, including speech, text and instructional videos. It typically has an underlying structure, with a starting point, ending, and certain objective steps between them. In this paper, we consider instructional videos where there are tens of millions of them on the Internet. We propose a method for parsing a video into such semantic steps in an unsupervised way. Our method is capable of providing a semantic storyline of the video composed of its objective steps. We accomplish this using both visual and language cues in a joint generative model. Our method can also provide a textual description for each of the identified semantic steps and video segments. We evaluate our method on a large number of complex YouTube videos and show that our method discovers semantically correct instructions for a variety of tasks.
There is a large variation in the activities that humans perform in their everyday lives. We consider modeling these composite human activities which comprises multiple basic level actions in a completely unsupervised setting. Our model learns high-l evel co-occurrence and temporal relations between the actions. We consider the video as a sequence of short-term action clips, which contains human-words and object-words. An activity is about a set of action-topics and object-topics indicating which actions are present and which objects are interacting with. We then propose a new probabilistic model relating the words and the topics. It allows us to model long-range action relations that commonly exist in the composite activities, which is challenging in previous works. We apply our model to the unsupervised action segmentation and clustering, and to a novel application that detects forgotten actions, which we call action patching. For evaluation, we contribute a new challenging RGB-D activity video dataset recorded by the new Kinect v2, which contains several human daily activities as compositions of multiple actions interacting with different objects. Moreover, we develop a robotic system that watches people and reminds people by applying our action patching algorithm. Our robotic setup can be easily deployed on any assistive robot.
Supervised learning with large scale labeled datasets and deep layered models has made a paradigm shift in diverse areas in learning and recognition. However, this approach still suffers generalization issues under the presence of a domain shift betw een the training and the test data distribution. In this regard, unsupervised domain adaptation algorithms have been proposed to directly address the domain shift problem. In this paper, we approach the problem from a transductive perspective. We incorporate the domain shift and the transductive target inference into our framework by jointly solving for an asymmetric similarity metric and the optimal transductive target label assignment. We also show that our model can easily be extended for deep feature learning in order to learn features which are discriminative in the target domain. Our experiments show that the proposed method significantly outperforms state-of-the-art algorithms in both object recognition and digit classification experiments by a large margin.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا