ترغب بنشر مسار تعليمي؟ اضغط هنا

The formalism of SUSYQM (SUperSYmmetric Quantum Mechanics) is properly modified in such a way to be suitable for the description and the solution of a classical maximally superintegrable Hamiltonian System, the so-called Taub-Nut system, associated w ith the Hamiltonian: $$ mathcal{H}_eta ({mathbf{q}}, {mathbf{p}}) = mathcal{T}_eta ({mathbf{q}}, {mathbf{p}}) + mathcal{U}_eta({mathbf{q}}) = frac{|{mathbf{q}}| {mathbf{p}}^2}{2m(eta + |{mathbf{q}}|)} - frac{k}{eta + |{mathbf{q}}|} quad (k>0, eta>0) , .$$ In full agreement with the results recently derived by A. Ballesteros et al. for the quantum case, we show that the classical Taub-Nut system shares a number of essential features with the Kepler system, that is just its Euclidean version arising in the limit $eta to 0$, and for which a SUSYQM approach has been recently introduced by S. Kuru and J. Negro. In particular, for positive $eta$ and negative energy the motion is always periodic; it turns out that the period depends upon $ eta$ and goes to the Euclidean value as $eta to 0$. Moreover, the maximal superintegrability is preserved by the $eta$-deformation, due to the existence of a larger symmetry group related to an $eta$-deformed Runge-Lenz vector, which ensures that in $mathbb{R}^3$ closed orbits are again ellipses. In this context, a deformed version of the third Keplers law is also recovered. The closing section is devoted to a discussion of the $eta<0$ case, where new and partly unexpected features arise.
In this work we give a mechanical (Hamiltonian) interpretation of the so called spectrality property introduced by Sklyanin and Kuznetsov in the context of Backlund transformations (BTs) for finite dimensional integrable systems. The property turns o ut to be deeply connected with the Hamilton-Jacobi separation of variables and can lead to the explicit integration of the underlying model through the expression of the BTs. Once such construction is given, it is shown, in a simple example, that it is possible to interpret the Baxter Q operator defining the quantum BTs us the Greens function, or propagator, of the time dependent Schrodinger equation for the interpolating Hamiltonian.
A novel family of exactly solvable quantum systems on curved space is presented. The family is the quantum version of the classical Perlick family, which comprises all maximally superintegrable 3-dimensional Hamiltonian systems with spherical symmetr y. The high number of symmetries (both geometrical and dynamical) exhibited by the classical systems has a counterpart in the accidental degeneracy in the spectrum of the quantum systems. This family of quantum problem is completely solved with the techniques of the SUSYQM (supersymmetric quantum mechanics). We also analyze in detail the ordering problem arising in the quantization of the kinetic term of the classical Hamiltonian, stressing the link existing between two physically meaningful quantizations: the geometrical quantization and the position dependent mass quantization.
We construct Backlund transformations (BTs) for the Kirchhoff top by taking advantage of the common algebraic Poisson structure between this system and the $sl(2)$ trigonometric Gaudin model. Our BTs are integrable maps providing an exact time-discre tization of the system, inasmuch as they preserve both its Poisson structure and its invariants. Moreover, in some special cases we are able to show that these maps can be explicitly integrated in terms of the initial conditions and of the iteration time $n$. Encouraged by these partial results we make the conjecture that the maps are interpolated by a specific one-parameter family of hamiltonian flows, and present the corresponding solution. We enclose a few pictures where the orbits of the continuous and of the discrete flow are depicted.
The Degasperis-Procesi equation with self-consistent sources(DPESCS) is derived. The Lax representation and the conservation laws for DPESCS are constructed. The peakon solution of DPESCS is obtained.
The role of curvature in relation with Lie algebra contractions of the pseudo-ortogonal algebras so(p,q) is fully described by considering some associated symmetrical homogeneous spaces of constant curvature within a Cayley-Klein framework. We show t hat a given Lie algebra contraction can be interpreted geometrically as the zero-curvature limit of some underlying homogeneous space with constant curvature. In particular, we study in detail the contraction process for the three classical Riemannian spaces (spherical, Euclidean, hyperbolic), three non-relativistic (Newtonian) spacetimes and three relativistic ((anti-)de Sitter and Minkowskian) spacetimes. Next, from a different perspective, we make use of quantum deformations of Lie algebras in order to construct a family of spaces of non-constant curvature that can be interpreted as deformations of the above nine spaces. In this framework, the quantum deformation parameter is identified as the parameter that controls the curvature of such quantum spaces.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا