ترغب بنشر مسار تعليمي؟ اضغط هنا

Contractions, deformations and curvature

122   0   0.0 ( 0 )
 نشر من قبل Francisco Jose Herranz
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The role of curvature in relation with Lie algebra contractions of the pseudo-ortogonal algebras so(p,q) is fully described by considering some associated symmetrical homogeneous spaces of constant curvature within a Cayley-Klein framework. We show that a given Lie algebra contraction can be interpreted geometrically as the zero-curvature limit of some underlying homogeneous space with constant curvature. In particular, we study in detail the contraction process for the three classical Riemannian spaces (spherical, Euclidean, hyperbolic), three non-relativistic (Newtonian) spacetimes and three relativistic ((anti-)de Sitter and Minkowskian) spacetimes. Next, from a different perspective, we make use of quantum deformations of Lie algebras in order to construct a family of spaces of non-constant curvature that can be interpreted as deformations of the above nine spaces. In this framework, the quantum deformation parameter is identified as the parameter that controls the curvature of such quantum spaces.



قيم البحث

اقرأ أيضاً

Theoretical background of continuous contractions of finite-dimensional Lie algebras is rigorously formulated and developed. In particular, known necessary criteria of contractions are collected and new criteria are proposed. A number of requisite in variant and semi-invariant quantities are calculated for wide classes of Lie algebras including all low-dimensional Lie algebras. An algorithm that allows one to handle one-parametric contractions is presented and applied to low-dimensional Lie algebras. As a result, all one-parametric continuous contractions for the both complex and real Lie algebras of dimensions not greater than four are constructed with intensive usage of necessary criteria of contractions and with studying correspondence between real and complex cases. Levels and co-levels of low-dimensional Lie algebras are discussed in detail. Properties of multi-parametric and repeated contractions are also investigated.
We prove that there exists just one pair of complex four-dimensional Lie algebras such that a well-defined contraction among them is not equivalent to a generalized IW-contraction (or to a one-parametric subgroup degeneration in conventional algebrai c terms). Over the field of real numbers, this pair of algebras is split into two pairs with the same contracted algebra. The example we constructed demonstrates that even in the dimension four generalized IW-contractions are not sufficient for realizing all possible contractions, and this is the lowest dimension in which generalized IW-contractions are not universal. Moreover, this is also the first example of nonexistence of generalized IW-contraction for the case when the contracted algebra is not characteristically nilpotent and, therefore, admits nontrivial diagonal derivations. The lower bound (equal to three) of nonnegative integer parameter exponents which are sufficient to realize all generalized IW-contractions of four-dimensional Lie algebras is also found.
99 - Kang Lu 2020
We suggest the notion of perfect integrability for quantum spin chains and conjecture that quantum spin chains are perfectly integrable. We show the perfect integrability for Gaudin models associated to simple Lie algebras of all finite types, with p eriodic and regular quasi-periodic boundary conditions.
In this paper, we first construct the controlling algebras of embedding tensors and Lie-Leibniz triples, which turn out to be a graded Lie algebra and an $L_infty$-algebra respectively. Then we introduce representations and cohomologies of embedding tensors and Lie-Leibniz triples, and show that there is a long exact sequence connecting various cohomologies. As applications, we classify infinitesimal deformations and central extensions using the second cohomology groups. Finally, we introduce the notion of a homotopy embedding tensor which will induce a Leibniz$_infty$-algebra. We realize Kotov and Strobls construction of an $L_infty$-algebra from an embedding tensor, to a functor from the category of homotopy embedding tensors to that of Leibniz$_infty$-algebras, and a functor further to that of $L_infty$-algebras.
54 - Richard Kerner 2000
We discuss certain ternary algebraic structures appearing more or less naturally in various domains of theoretical and mathematical physics. Far from being exhaustive, this article is intended above all to draw attention to these algebras, which may find more interesting applications in the years to come.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا