ترغب بنشر مسار تعليمي؟ اضغط هنا

We use a theoretical frame-work to analytically assess temporal prediction error functions on von-Karman turbulence when a zonal representation of wave-fronts is assumed. Linear prediction models analysed include auto-regressive of order up to three, bilinear interpolation functions and a minimum mean square error predictor. This is an extension of the authors previously published work (see ref. 2) in which the efficacy of various temporal prediction models was established. Here we examine the tolerance of these algorithms to specific forms of model errors, thus defining the expected change in behaviour of the previous results under less ideal conditions. Results show that +/- 100pc wind-speed error and +/- 50 deg are tolerable before the best linear predictor delivers poorer performance than the no-prediction case.
Sodium Laser Guide Stars (LGSs) are elongated sources due to the thickness and the finite distance of the sodium layer. The fluctuations of the sodium layer altitude and atom density profile induce errors on centroid measurements of elongated spots, and generate spurious optical aberrations in closed--loop adaptive optics (AO) systems. According to an analytical model and experimental results obtained with the University of Victoria LGS bench demonstrator, one of the main origins of these aberrations, referred to as LGS aberrations, is not the Centre-of-Gravity (CoG) algorithm itself, but the thresholding applied on the pixels of the image prior to computing the spot centroids. A new thresholding method, termed ``radial thresholding, is presented here, cancelling out most of the LGS aberrations without altering the centroid measurement accuracy.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا