ترغب بنشر مسار تعليمي؟ اضغط هنا

Physically-realistic simulated environments are powerful platforms for enabling measurable, replicable and statistically-robust investigation of complex robotic systems. Such environments are epitomised by the RoboCup simulation leagues, which have b een successfully utilised to conduct massively-parallel experiments in topics including: optimisation of bipedal locomotion, self-localisation from noisy perception data and planning complex multi-agent strategies without direct agent-to-agent communication. Many of these systems are later transferred to physical robots, making the simulation leagues invaluable well-beyond the scope of simulated soccer matches. In this study, we provide an overview of the RoboCup simulation leagues and describe their properties as they pertain to replicable and robust robotics research. To demonstrate their utility directly, we leverage the ability to run parallelised experiments to evaluate different competition formats (e.g. round robin) for the RoboCup 2D simulation league. Our results demonstrate that a previously-proposed hybrid format minimises fluctuations from true (statistically-significant) team performance rankings within the time constraints of the RoboCup world finals. Our experimental analysis would be impossible with physical robots alone, and we encourage other researchers to explore the potential for enriching their experimental pipelines with simulated components, both to minimise experimental costsand enable others to replicate and expand upon their results in a hardware-independent manner.
The selection of an appropriate competition format is critical for both the success and credibility of any competition, both real and simulated. In this paper, the automated parallelism offered by the RoboCupSoccer 2D simulation league is leveraged t o conduct a 28,000 game round-robin between the top 8 teams from RoboCup 2012 and 2013. A proposed new competition format is found to reduce variation from the resultant statistically significant team performance rankings by 75% and 67%, when compared to the actual competition results from RoboCup 2012 and 2013 respectively. These results are statistically validated by generating 10,000 random tournaments for each of the three considered formats and comparing the respective distributions of ranking discrepancy.
We review attempts that have been made towards understanding the computational properties and mechanisms of input-driven dynamical systems like RNNs, and reservoir computing networks in particular. We provide details on methods that have been develop ed to give quantitative answers to the questions above. Following this, we show how self-organization may be used to improve reservoirs for better performance, in some cases guided by the measures presented before. We also present a possible way to quantify task performance using an information-theoretic approach, and finally discuss promising future directions aimed at a better understanding of how these systems perform their computations and how to best guide self-organized processes for their optimization.
This work describes preliminary steps towards nano-scale reservoir computing using quantum dots. Our research has focused on the development of an accumulator-based sensing system that reacts to changes in the environment, as well as the development of a software simulation. The investigated systems generate nonlinear responses to inputs that make them suitable for a physical implementation of a neural network. This development will enable miniaturisation of the neurons to the molecular level, leading to a range of applications including monitoring of changes in materials or structures. The system is based around the optical properties of quantum dots. The paper will report on experimental work on systems using Cadmium Selenide (CdSe) quantum dots and on the various methods to render the systems sensitive to pH, redox potential or specific ion concentration. Once the quantum dot-based systems are rendered sensitive to these triggers they can provide a distributed array that can monitor and transmit information on changes within the material.
Information theory and the framework of information dynamics have been used to provide tools to characterise complex systems. In particular, we are interested in quantifying information storage, information modification and information transfer as ch aracteristic elements of computation. Although these quantities are defined for autonomous dynamical systems, information dynamics can also help to get a wholistic understanding of input-driven systems such as neural networks. In this case, we do not distinguish between the system itself, and the effects the input has to the system. This may be desired in some cases, but it will change the questions we are able to answer, and is consequently an important consideration, for example, for biological systems which perform non-trivial computations and also retain a short-term memory of past inputs. Many other real world systems like cortical networks are also heavily input-driven, and application of tools designed for autonomous dynamic systems may not necessarily lead to intuitively interpretable results. The aim of our work is to extend the measurements used in the information dynamics framework for input-driven systems. Using the proposed input-corrected information storage we hope to better quantify system behaviour, which will be important for heavily input-driven systems like artificial neural networks to abstract from specific benchmarks, or for brain networks, where intervention is difficult, individual components cannot be tested in isolation or with arbitrary input data.
The RoboCup 2D Simulation League incorporates several challenging features, setting a benchmark for Artificial Intelligence (AI). In this paper we describe some of the ideas and tools around the development of our team, Gliders2012. In our descriptio n, we focus on the evaluation function as one of our central mechanisms for action selection. We also point to a new framework for watching log files in a web browser that we release for use and further development by the RoboCup community. Finally, we also summarize results of the group and final matches we played during RoboCup 2012, with Gliders2012 finishing 4th out of 19 teams.
96 - Oliver Obst 2009
In long-term deployments of sensor networks, monitoring the quality of gathered data is a critical issue. Over the time of deployment, sensors are exposed to harsh conditions, causing some of them to fail or to deliver less accurate data. If such a d egradation remains undetected, the usefulness of a sensor network can be greatly reduced. We present an approach that learns spatio-temporal correlations between different sensors, and makes use of the learned model to detect misbehaving sensors by using distributed computation and only local communication between nodes. We introduce SODESN, a distributed recurrent neural network architecture, and a learning method to train SODESN for fault detection in a distributed scenario. Our approach is evaluated using data from different types of sensors and is able to work well even with less-than-perfect link qualities and more than 50% of failed nodes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا