ترغب بنشر مسار تعليمي؟ اضغط هنا

Nano-scale reservoir computing

120   0   0.0 ( 0 )
 نشر من قبل Oliver Obst
 تاريخ النشر 2013
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This work describes preliminary steps towards nano-scale reservoir computing using quantum dots. Our research has focused on the development of an accumulator-based sensing system that reacts to changes in the environment, as well as the development of a software simulation. The investigated systems generate nonlinear responses to inputs that make them suitable for a physical implementation of a neural network. This development will enable miniaturisation of the neurons to the molecular level, leading to a range of applications including monitoring of changes in materials or structures. The system is based around the optical properties of quantum dots. The paper will report on experimental work on systems using Cadmium Selenide (CdSe) quantum dots and on the various methods to render the systems sensitive to pH, redox potential or specific ion concentration. Once the quantum dot-based systems are rendered sensitive to these triggers they can provide a distributed array that can monitor and transmit information on changes within the material.



قيم البحث

اقرأ أيضاً

The feasibility of reservoir computing based on dipole-coupled nanomagnets is demonstrated using micro-magnetic simulations. The reservoir consists of an 2x10 array of nanomagnets. The static-magnetization directions of the nanomagnets are used as re servoir states. To update these states, we change the magnetization of one nanomagnet according to a single-bit-sequential signal. We also change the uniaxial anisotropy of the other nanomagnets using a voltage-induced magnetic-anisotropy change to enhance information flow, storage, and linear/nonlinear calculations. Binary tasks with AND, OR, and XOR operations were performed to evaluate the performance of the magnetic-array reservoir. The reservoir-computing output matrix was found to be trainable to perform AND, OR, and XOR operations with an input delay of up to three bits.
108 - John Moon , Wei D. Lu 2021
Reservoir computing (RC) offers efficient temporal data processing with a low training cost by separating recurrent neural networks into a fixed network with recurrent connections and a trainable linear network. The quality of the fixed network, call ed reservoir, is the most important factor that determines the performance of the RC system. In this paper, we investigate the influence of the hierarchical reservoir structure on the properties of the reservoir and the performance of the RC system. Analogous to deep neural networks, stacking sub-reservoirs in series is an efficient way to enhance the nonlinearity of data transformation to high-dimensional space and expand the diversity of temporal information captured by the reservoir. These deep reservoir systems offer better performance when compared to simply increasing the size of the reservoir or the number of sub-reservoirs. Low frequency components are mainly captured by the sub-reservoirs in later stage of the deep reservoir structure, similar to observations that more abstract information can be extracted by layers in the late stage of deep neural networks. When the total size of the reservoir is fixed, tradeoff between the number of sub-reservoirs and the size of each sub-reservoir needs to be carefully considered, due to the degraded ability of individual sub-reservoirs at small sizes. Improved performance of the deep reservoir structure alleviates the difficulty of implementing the RC system on hardware systems.
Reservoir computing is a computational framework suited for temporal/sequential data processing. It is derived from several recurrent neural network models, including echo state networks and liquid state machines. A reservoir computing system consist s of a reservoir for mapping inputs into a high-dimensional space and a readout for pattern analysis from the high-dimensional states in the reservoir. The reservoir is fixed and only the readout is trained with a simple method such as linear regression and classification. Thus, the major advantage of reservoir computing compared to other recurrent neural networks is fast learning, resulting in low training cost. Another advantage is that the reservoir without adaptive updating is amenable to hardware implementation using a variety of physical systems, substrates, and devices. In fact, such physical reservoir computing has attracted increasing attention in diverse fields of research. The purpose of this review is to provide an overview of recent advances in physical reservoir computing by classifying them according to the type of the reservoir. We discuss the current issues and perspectives related to physical reservoir computing, in order to further expand its practical applications and develop next-generation machine learning systems.
Bio-inspired hardware holds the promise of low-energy, intelligent and highly adaptable computing systems. Applications span from automatic classification for big data management, through unmanned vehicle control, to control for bio-medical prosthesi s. However, one of the major challenges of fabricating bio-inspired hardware is building ultra-high density networks out of complex processing units interlinked by tunable connections. Nanometer-scale devices exploiting spin electronics (or spintronics) can be a key technology in this context. In particular, magnetic tunnel junctions are well suited for this purpose because of their multiple tunable functionalities. One such functionality, non-volatile memory, can provide massive embedded memory in unconventional circuits, thus escaping the von-Neumann bottleneck arising when memory and processors are located separately. Other features of spintronic devices that could be beneficial for bio-inspired computing include tunable fast non-linear dynamics, controlled stochasticity, and the ability of single devices to change functions in different operating conditions. Large networks of interacting spintronic nano-devices can have their interactions tuned to induce complex dynamics such as synchronization, chaos, soliton diffusion, phase transitions, criticality, and convergence to multiple metastable states. A number of groups have recently proposed bio-inspired architectures that include one or several types of spintronic nanodevices. In this article we show how spintronics can be used for bio-inspired computing. We review the different approaches that have been proposed, the recent advances in this direction, and the challenges towards fully integrated spintronics-CMOS (Complementary metal - oxide - semiconductor) bio-inspired hardware.
Neuromorphic computing describes the use of VLSI systems to mimic neuro-biological architectures and is also looked at as a promising alternative to the traditional von Neumann architecture. Any new computing architecture would need a system that can perform floating-point arithmetic. In this paper, we describe a neuromorphic system that performs IEEE 754-compliant floating-point multiplication. The complex process of multiplication is divided into smaller sub-tasks performed by components Exponent Adder, Bias Subtractor, Mantissa Multiplier and Sign OF/UF. We study the effect of the number of neurons per bit on accuracy and bit error rate, and estimate the optimal number of neurons needed for each component.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا