ترغب بنشر مسار تعليمي؟ اضغط هنا

We analyze the laws of conservation of momentum and angular momentum in classical electrodynamics of material media with bound charges, and explore the possibility to describe the properties of such media via a discrete set of point-like charges of z ero size (as imposed by special relativity), and via continuous charge/current distributions. This way we put a question: do we have to recognize the infinite fields at the location of elementary charges as the essential physical requirement, or such infinite fields can be ignored via introduction of continuous charge distribution? In order to answer this question, we consider the interaction of a homogeneously charged insulating plate with a compact magnetic dipole, moving along the plate. We arrive at the apparent violation of the angular momentum conservation law and show that this law is re-covered, when the electric field at the location of each elementary charge of the plate is taken infinite. This result signifies that the description of electromagnetic properties of material media via the continuous charge and current distributions is not a universal approximation, and at the fundamental level, we have to deal with a system of elementary discrete charges of zero size, at least in the analysis of laws of conservation of momentum and angular momentum.
We suggest a new relativity principle, which asserts the impossibility to distinguish the state of rest and the state of motion at the constant velocity of a system, if no work is done to the system in question during its motion. We suggest calling t his new rule as conservative relativity principle (CRP). In the case of an empty space, CRP is reduced to the Einstein special relativity principle. We also show that CRP is compatible with the general relativity principle. One of important implications of CRP is the dependence of the proper time of a charged particle on the electric potential at its location. In the present paper we consider the relevant experimental facts gathered up to now, where the latter effect can be revealed. We show that in atomic physics the introduction of this effect furnishes a better convergence between theory and experiment than that provided by the standard approach. Finally, we reanalyze the Moessbauer experiments in rotating systems and show that the obtained recently puzzling deviation of the relative energy shift between emission and absorption lines from the relativistic prediction can be explained by the CRP.
We continue the analysis of quantum two-particle bound systems we have started in (Kholmetskii, A.L., Missevitch, O.V. and Yarman, T. Phys. Scr., 82 (2010), 045301), where we re-postulated the Dirac equation for the bound electron in an external EM f ield based on the requirement of total momentum conservation, when its EM radiation is prohibited. It has been shown that the modified expression for the energy levels of hydrogenic atoms within such a pure bound field theory (PBFT) provides the same gross and fine structure of energy levels like the standard theory. Now we apply the PBFT to the analysis of hyperfine interactions and show the appearance of some important corrections to the energy levels (the 1S-2S interval and hyperfine spin-spin splitting in positronium, 1S and 2S-2P Lamb shift in hydrogen), which remedies considerably the discrepancy between theoretical predictions and experimental results. In particular, the corrected 1S-2S interval and the spin-spin splitting in positronium practically eliminate the available up to date deviation between theoretical and experimental data. The re-estimated classic 2S-2P Lamb shift as well as ground state Lamb shift in the hydrogen atom lead to the proton charge radius rp=0.837(8) fm (from 2S-2P Lamb shift), and rp=0.840(24) fm (from 1S Lamb shift), which corresponds to the latest estimation of proton size via the measurement of 2S-2P Lamb shift in muonic hydrogen, i.e. rp=0.84184(67) fm. We also emphasize the universal character of PBFT, which is applicable to heavy atoms, too, and analyze 2S-2P interval in Li-like uranium. We show that the corrections we introduced provide a better correspondence between the calculated and experimental data than that furnished by the standard approach. The results obtained support our principal idea of the enhancement of the bound EM field in the absence of EM radiation for quantum bound systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا