ترغب بنشر مسار تعليمي؟ اضغط هنا

Many Polyakov loop models can be written in a dual formulation which is free of sign problem even when a non-vanishing baryon chemical potential is introduced in the action. Here, results of numerical simulations of a dual representation of one such effective Polyakov loop model at finite baryon density are presented. We compute various local observables such as energy density, baryon density, quark condensate and describe in details the phase diagram of the model. The regions of the first order phase transition and the crossover, as well as the line of the second order phase transition, are established. We also compute several correlation functions of the Polyakov loops.
We study analytically and numerically the three-dimensional U(1) lattice gauge theory at finite temperature in the dual formulation. For an appropriate disorder operator, we obtain the renormalization group equations describing the critical behavior of the model in the vicinity of the deconfinement phase transition. These equations are used to check the validity of the Svetitsky-Yaffe conjecture regarding the critical behavior of the lattice U(1) model. Furthermore, we perform numerical simulations of the model for $N_t = 1, 2, 4, 8$ and compute, by a cluster algorithm, the dual correlation functions and the corresponding second moment correlation length. In this way we locate the position of the critical point and calculate critical indices.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا