ﻻ يوجد ملخص باللغة العربية
We study analytically and numerically the three-dimensional U(1) lattice gauge theory at finite temperature in the dual formulation. For an appropriate disorder operator, we obtain the renormalization group equations describing the critical behavior of the model in the vicinity of the deconfinement phase transition. These equations are used to check the validity of the Svetitsky-Yaffe conjecture regarding the critical behavior of the lattice U(1) model. Furthermore, we perform numerical simulations of the model for $N_t = 1, 2, 4, 8$ and compute, by a cluster algorithm, the dual correlation functions and the corresponding second moment correlation length. In this way we locate the position of the critical point and calculate critical indices.
We examine the axial U(1) symmetry near and above the finite temperature phase transition in two-flavor QCD using lattice QCD simulations. Although the axial U(1) symmetry is always violated by quantization, (i.e.) the chiral anomaly, the correlation
We describe how the strings, which are classical solutions of the continuum three-dimensional U(1)+Higgs theory, can be studied on the lattice. The effect of an external magnetic field is also discussed and the first results on the string free energy
We present a tensor formulation for free compact electrodynamics in three Euclidean dimensions and use this formulation to construct a quantum Hamiltonian in the continuous-time limit. Gauge-invariance is maintained at every step and the resulting Ha
We present and discuss the results of a Monte-Carlo simulation of the phase transition in pure compact U(1) lattice gauge theory with Wilson action on a hypercubic lattice with periodic boundary conditions. The statistics are large enough to make a t
We investigate SU(2) lattice gauge theory in four dimensions in the maximally abelian projection. Studying the effects on different lattice sizes we show that the deconfinement transition of the fields and the percolation transition of the monopole c