ترغب بنشر مسار تعليمي؟ اضغط هنا

43 - Ofer Lahav 2014
We comment on cases in the history of Astronomy, which may shed some light on the current established but enigmatic concordance model of Cosmology. Should the model be understood by adding new entities such as Dark Matter and Dark Energy, or by modif ying the underlying theory? For example, the prediction and discovery of planet Neptune can be regarded as analogous to finding a dark component; while explaining the anomalous perihelion precession of Mercury by General Relativity can be taken as analogous to the possibility that modified gravity is an alternative to dark components of the universe. In this paper, we revise this analogy coming from the history of astronomy with an eye to illustrating some of the similarities and differences between the two cases.
We revise the mass estimate of the Local Group (LG) when Dark Energy (in the form of the Cosmological Constant) is incorporated into the Timing Argument (TA) mass estimator for the Local Group (LG). Assuming the age of the Universe and the Cosmologic al Constant according to the recent values from the Planck CMB experiment, we find the mass of the LG to be M_TAL = (4.73 +- 1.03) x 10^{12} M_sun, which is 13% higher than the classical TA mass estimate. This partly explains the discrepancy between earlier results from LCDM simulations and the classical TA. When a similar analysis is performed on 16 LG-like galaxy pairs from the CLUES simulations, we find that the scatter in the ratio of the virial to the TA estimated mass is given by M_vir/M_TAL = 1.04 +-0.16. Applying it to the LG mass estimation we find a calibrated M_vir = (4.92 +- 1.08 (obs) +- 0.79 (sys)) x 10^{12} M_sun.
105 - Ofer Lahav 2009
We study the prospects for detecting neutrino masses from the galaxy angular power spectrum in photometric redshift shells of the Dark Energy Survey (DES) over a volume of 20 (Gpc/h)^3 combined with the Cosmic Microwave Background (CMB) angular fluct uations expected to be measured from the Planck satellite. We find that for a Lambda-CDM concordance model with 7 free parameters in addition to a fiducial neutrino mass of M_nu = 0.24 eV, we recover from DES &Planck the correct value with uncertainty of +- 0.12 eV (95 % CL), assuming perfect knowledge of the galaxy biasing. If the fiducial total mass is close to zero, then the upper limit is 0.11 eV (95 % CL). This upper limit from DES &Planck is over 3 times tighter than using Planck alone, as DES breaks the parameter degeneracies in a CMB-only analysis. The analysis utlilizes spherical harmonics up to 300, averaged in bin of 10 to mimic the DES sky coverage. The results are similar if we supplement DES bands (grizY) with the VISTA Hemisphere Survey (VHS) near infrared band (JHK). The result is robust to uncertainties in non-linear fluctuations and redshift distortions. However, the result is sensitive to the assumed galaxy biasing schemes and it requires accurate prior knowledge of the biasing. To summarize, if the total neutrino mass in nature greater than 0.1eV, we should be able to detect it with DES &Planck, a result with great importance to fundamental Physics.
Retrieval of orbital parameters of extrasolar planets poses considerable statistical challenges.Due to sparse sampling, measurement errors, parameters degeneracy and modelling limitations, there are no unique values of basic parameters, such as perio d and eccentricity. Here, we estimate the orbital parameters from radial velocity data in a Bayesian framework by utilizing Markov Chain Monte Carlo (MCMC) simulations with the Metropolis-Hastings algorithm. We follow a methodology recently proposed by Gregory and Ford. Our implementation of MCMC is based on the object-oriented approach outlined by Graves. We make our resulting code, ExoFit, publicly available with this paper. It can search for either one or two planets as illustrated on mock data. As an example we re-analysed the orbital solution of companions to HD 187085 and HD 159868 from the published radial velocity data. We confirm the degeneracy reported for orbital parameters of the companion to HD 187085, and show that a low-eccentricity orbit is more probable for this planet. For HD 159868, we obtained slightly different orbital solution and a relatively high noise factor indicating the presence of an unaccounted signal in the radial velocity data. ExoFit is designed in such a way that it can be extended for a variety of probability models, including different Bayesian priors.
57 - Yehuda Hoffman 2007
We study the distinct effects of Dark Matter and Dark Energy on the future evolution of nearby large scale structures using constrained N-body simulations. We contrast a model of Cold Dark Matter and a Cosmological Constant (LCDM) with an Open CDM (O CDM) model with the same matter density Omega_m =0.3 and the same Hubble constant h=0.7. Already by the time the scale factor increased by a factor of 6 (29 Gyr from now in LCDM; 78 Gyr from now in OCDM) the comoving position of the Local Group is frozen. Well before that epoch the two most massive members of the Local Group, the Milky Way and Andromeda, will merge. However, as the expansion rates of the scale factor in the two models are different, the Local Group will be receding in physical coordinates from Virgo exponentially in a LCDM model and at a roughly constant velocity in an OCDM model. More generally, in comoving coordinates the future large scale structure will look like a sharpened image of the present structure: the skeleton of the cosmic web will remain the same, but clusters will be more `isolated and the filaments will become thinner. This implies that the long-term fate of large scale structure as seen in comoving coordinates is determined primarily by the matter density. We conclude that although the LCDM model is accelerating at present due to its Dark Energy component while the OCDM model is non accelerating, their large scale structure in the future will look very similar in comoving coordinates.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا