ترغب بنشر مسار تعليمي؟ اضغط هنا

We present ANNz2, a new implementation of the public software for photometric redshift (photo-z) estimation of Collister and Lahav (2004), which now includes generation of full probability distribution functions (PDFs). ANNz2 utilizes multiple machin e learning methods, such as artificial neural networks and boosted decision/regression trees. The objective of the algorithm is to optimize the performance of the photo-z estimation, to properly derive the associated uncertainties, and to produce both single-value solutions and PDFs. In addition, estimators are made available, which mitigate possible problems of non-representative or incomplete spectroscopic training samples. ANNz2 has already been used as part of the first weak lensing analysis of the Dark Energy Survey, and is included in the experiments first public data release. Here we illustrate the functionality of the code using data from the tenth data release of the Sloan Digital Sky Survey and the Baryon Oscillation Spectroscopic Survey. The code is available for download at https://github.com/IftachSadeh/ANNZ .
The gravitational redshift effect allows one to directly probe the gravitational potential in clusters of galaxies. Following up on Wojtak et al. [Nature (London) 477, 567 (2011)], we present a new measurement. We take advantage of new data from the tenth data release of the Sloan Digital Sky Survey and the Baryon Oscillation Spectroscopic Survey. We compare the spectroscopic redshift of the brightest cluster galaxies (BCGs) with that of galaxies at the outskirts of clusters, using a sample with an average cluster mass of $10^{14} M_{odot}$. We find that these galaxies have an average relative redshift of -11 km/s compared with that of BCGs, with a standard deviation of +7 and -5 km/s. Our measurement is consistent with that of Wojtak et al. However, our derived standard deviation is larger, as we take into account various systematic effects, beyond the size of the dataset. The result is in good agreement with the predictions from general relativity.
41 - Ofer Lahav 2014
We comment on cases in the history of Astronomy, which may shed some light on the current established but enigmatic concordance model of Cosmology. Should the model be understood by adding new entities such as Dark Matter and Dark Energy, or by modif ying the underlying theory? For example, the prediction and discovery of planet Neptune can be regarded as analogous to finding a dark component; while explaining the anomalous perihelion precession of Mercury by General Relativity can be taken as analogous to the possibility that modified gravity is an alternative to dark components of the universe. In this paper, we revise this analogy coming from the history of astronomy with an eye to illustrating some of the similarities and differences between the two cases.
We revise the mass estimate of the Local Group (LG) when Dark Energy (in the form of the Cosmological Constant) is incorporated into the Timing Argument (TA) mass estimator for the Local Group (LG). Assuming the age of the Universe and the Cosmologic al Constant according to the recent values from the Planck CMB experiment, we find the mass of the LG to be M_TAL = (4.73 +- 1.03) x 10^{12} M_sun, which is 13% higher than the classical TA mass estimate. This partly explains the discrepancy between earlier results from LCDM simulations and the classical TA. When a similar analysis is performed on 16 LG-like galaxy pairs from the CLUES simulations, we find that the scatter in the ratio of the virial to the TA estimated mass is given by M_vir/M_TAL = 1.04 +-0.16. Applying it to the LG mass estimation we find a calibrated M_vir = (4.92 +- 1.08 (obs) +- 0.79 (sys)) x 10^{12} M_sun.
The combination of multiple cosmological probes can produce measurements of cosmological parameters much more stringent than those possible with any individual probe. We examine the combination of two highly correlated probes of late-time structure g rowth: (i) weak gravitational lensing from a survey with photometric redshifts and (ii) galaxy clustering and redshift space distortions from a survey with spectroscopic redshifts. We choose generic survey designs so that our results are applicable to a range of current and future photometric redshift (e.g. KiDS, DES, HSC, Euclid) and spectroscopic redshift (e.g. DESI, 4MOST, Sumire) surveys. Combining the surveys greatly improves their power to measure both dark energy and modified gravity. An independent, non-overlapping combination sees a dark energy figure of merit more than 4 times larger than that produced by either survey alone. The powerful synergies between the surveys are strongest for modified gravity, where their constraints are orthogonal, producing a non-overlapping joint figure of merit nearly 2 orders of magnitude larger than either alone. Our projected angular power spectrum formalism makes it easy to model the cross-correlation observable when the surveys overlap on the sky, producing a joint data vector and full covariance matrix. We calculate a same-sky improvement factor, from the inclusion of these cross-correlations, relative to non-overlapping surveys. We find nearly a factor of 4 for dark energy and more than a factor of 2 for modified gravity. The exact forecast figures of merit and same-sky benefits can be radically affected by a range of forecasts assumption, which we explore methodically in a sensitivity analysis. We show that that our fiducial assumptions produce robust results which give a good average picture of the science return from combining photometric and spectroscopic surveys.
We formulate the concept of non-linear and stochastic galaxy biasing in the framework of halo occupation statistics. Using two-point statistics in projection, we define the galaxy bias function, b_g(r_p), and the galaxy-dark matter cross-correlation function, R_{gm}(r_p), where r_p is the projected distance. We use the analytical halo model to predict how the scale dependence of b_g and R_{gm}, over the range 0.1 Mpc/h < r_p < 30 Mpc/h, depends on the non-linearity and stochasticity in halo occupation models. In particular we quantify the effect due to the presence of central galaxies, the assumption for the radial distribution of satellite galaxies, the richness of the halo, and the Poisson character of the probability to have a certain number of satellite galaxies in a halo of a certain mass. Overall, brighter galaxies reveal a stronger scale dependence, and out to a larger radius. In real-space, we find that galaxy bias becomes scale independent, with R_{gm} = 1, for radii r > 1 - 5 Mpc/h, depending on luminosity. However, galaxy bias is scale-dependent out to much larger radii when one uses the projected quantities defined in this paper. These projected bias functions have the advantage that they are more easily accessible observationally and that their scale dependence carries a wealth of information regarding the properties of galaxy biasing. To observationally constrain the parameters of the halo occupation statistics and to unveil the origin of galaxy biasing we propose the use of the bias function Gamma_{gm}(r_p)=b_g(r_p)/R_{gm}(r_p). This function is obtained via a combination of weak gravitational lensing and galaxy clustering, and it can be measured using existing and forthcoming imaging and spectroscopic galaxy surveys.
103 - Ofer Lahav 2009
We study the prospects for detecting neutrino masses from the galaxy angular power spectrum in photometric redshift shells of the Dark Energy Survey (DES) over a volume of 20 (Gpc/h)^3 combined with the Cosmic Microwave Background (CMB) angular fluct uations expected to be measured from the Planck satellite. We find that for a Lambda-CDM concordance model with 7 free parameters in addition to a fiducial neutrino mass of M_nu = 0.24 eV, we recover from DES &Planck the correct value with uncertainty of +- 0.12 eV (95 % CL), assuming perfect knowledge of the galaxy biasing. If the fiducial total mass is close to zero, then the upper limit is 0.11 eV (95 % CL). This upper limit from DES &Planck is over 3 times tighter than using Planck alone, as DES breaks the parameter degeneracies in a CMB-only analysis. The analysis utlilizes spherical harmonics up to 300, averaged in bin of 10 to mimic the DES sky coverage. The results are similar if we supplement DES bands (grizY) with the VISTA Hemisphere Survey (VHS) near infrared band (JHK). The result is robust to uncertainties in non-linear fluctuations and redshift distortions. However, the result is sensitive to the assumed galaxy biasing schemes and it requires accurate prior knowledge of the biasing. To summarize, if the total neutrino mass in nature greater than 0.1eV, we should be able to detect it with DES &Planck, a result with great importance to fundamental Physics.
Retrieval of orbital parameters of extrasolar planets poses considerable statistical challenges.Due to sparse sampling, measurement errors, parameters degeneracy and modelling limitations, there are no unique values of basic parameters, such as perio d and eccentricity. Here, we estimate the orbital parameters from radial velocity data in a Bayesian framework by utilizing Markov Chain Monte Carlo (MCMC) simulations with the Metropolis-Hastings algorithm. We follow a methodology recently proposed by Gregory and Ford. Our implementation of MCMC is based on the object-oriented approach outlined by Graves. We make our resulting code, ExoFit, publicly available with this paper. It can search for either one or two planets as illustrated on mock data. As an example we re-analysed the orbital solution of companions to HD 187085 and HD 159868 from the published radial velocity data. We confirm the degeneracy reported for orbital parameters of the companion to HD 187085, and show that a low-eccentricity orbit is more probable for this planet. For HD 159868, we obtained slightly different orbital solution and a relatively high noise factor indicating the presence of an unaccounted signal in the radial velocity data. ExoFit is designed in such a way that it can be extended for a variety of probability models, including different Bayesian priors.
Dark Energy is currently one of the biggest mysteries in science. In this article the origin of the concept is traced as far back as Newton and Hooke in the seventeenth century. Newton considered, along with the inverse square law, a force of attract ion that varies linearly with distance. A direct link can be made between this term and Einsteins cosmological constant, Lambda, and this leads to a possible relation between Lambda and the total mass of the universe. Machs influence on Einstein is discussed and the convoluted history of Lambda throughout the last ninety years is coherently presented.
55 - Yehuda Hoffman 2007
We study the distinct effects of Dark Matter and Dark Energy on the future evolution of nearby large scale structures using constrained N-body simulations. We contrast a model of Cold Dark Matter and a Cosmological Constant (LCDM) with an Open CDM (O CDM) model with the same matter density Omega_m =0.3 and the same Hubble constant h=0.7. Already by the time the scale factor increased by a factor of 6 (29 Gyr from now in LCDM; 78 Gyr from now in OCDM) the comoving position of the Local Group is frozen. Well before that epoch the two most massive members of the Local Group, the Milky Way and Andromeda, will merge. However, as the expansion rates of the scale factor in the two models are different, the Local Group will be receding in physical coordinates from Virgo exponentially in a LCDM model and at a roughly constant velocity in an OCDM model. More generally, in comoving coordinates the future large scale structure will look like a sharpened image of the present structure: the skeleton of the cosmic web will remain the same, but clusters will be more `isolated and the filaments will become thinner. This implies that the long-term fate of large scale structure as seen in comoving coordinates is determined primarily by the matter density. We conclude that although the LCDM model is accelerating at present due to its Dark Energy component while the OCDM model is non accelerating, their large scale structure in the future will look very similar in comoving coordinates.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا