ترغب بنشر مسار تعليمي؟ اضغط هنا

Interstellar grain alignment studies are currently experiencing a renaissance due to the development of a new quantitative theory based on Radiative Alignment Torques (RAT). One of the distinguishing predictions of this theory is a dependence of the grain alignment efficiency on the relative angle ($Psi$) between the magnetic field and the anisotropy direction of the radiation field. In an earlier study we found observational evidence for such an effect from observations of the polarization around the star HD 97300 in the Chamaeleon I cloud. However, due to the large uncertainties in the measured visual extinctions, the result was uncertain. By acquiring explicit spectral classification of the polarization targets, we have sought to perform a more precise reanalysis of the existing polarimetry data. We have obtained new spectral types for the stars in our for our polarization sample, which we combine with photometric data from the literature to derive accurate visual extinctions for our sample of background field stars. This allows a high accuracy test of the grain alignment efficiency as a function of $Psi$. We confirm and improve the measured accuracy of the variability of the grain alignment efficiency with $Psi$, seen in the earlier study. We note that the grain temperature (heating) also shows a dependence on $Psi$ which we interpret as a natural effect of the projection of the grain surface to the illuminating radiation source. This dependence also allows us to derive an estimate of the fraction of aligned grains in the cloud.
90 - C. Saffe , M. Gomez , O. Pintado 2008
Aims: To determine the metallicities of 113 Southern Hemisphere Vega-like candidate stars in relation to the Exoplanet host group and field stars. Methods: We applied two spectroscopic methods of abundance determinations: equivalent width measureme nts together with the ATLAS9 (Kurucz 1993) model atmospheres and the WIDTH9 program, and a comparison of observed spectra with the grid of synthetic spectra of Munari et al. (2005). Results: For the Vega-like group, the metallicities are indistinguishable from those of field stars not known to be associated with planets or disks. This result is quite different from the metallicities of Exoplanet host stars which are metal-rich in comparison to field stars.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا