ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the installed and fully operational beam stabilization and fiber injection subsystem feeding the 2nd generation VLTI instrument GRAVITY. The interferometer GRAVITY requires an unprecedented stability of the VLTI optical train to achieve mi cro-arcsecond astrometry. For this purpose, GRAVITY contains four fiber coupler units, one per telescope. Each unit is equipped with actuators to stabilize the telescope beam in terms of tilt and lateral pupil displacement, to rotate the field, to adjust the polarization and to compensate atmospheric piston. A special roof-prism offers the possibility of on-axis as well as off-axis fringe tracking without changing the optical train. We describe the assembly, integration and alignment and the resulting optical quality and performance of the individual units. Finally, we present the closed-loop performance of the tip-tilt and pupil tracking achieved with the final systems in the lab.
The stellar population in the central parsec of the Galaxy is dominated by an old (several Gyr) population, but young, massive stars dominate the luminosity function. We have studied the most luminous of these stars, GCIRS 7, in order to constrain th e age of the recent star formation event in the Galactic Centre and to characterise it as an interferometric reference for observations of the Galactic Centre with the instrument GRAVITY, which will equip the Very Large Telescope Interferometer in the near future. We present the first H-band interferometric observations of GCIRS 7, obtained using the PIONIER visitor instrument on the VLTI using the four 8.2-m unit telescopes. In addition, we present unpublished K-band VLTI/AMBER data, build JHKL light-curves based on data spanning 4 decades, and measured the stars effective temperature using SINFONI spectroscopy. GCIRS 7 is marginally resolved at H-band (in 2013: uniform-disk diameter=1.076+/-0.093mas, R=960+/-92Rsun at 8.33+/-0.35kpc). We detect a significant circumstellar contribution at K-band. The star and its environment are variable in brightness and in size. The photospheric H-band variations are well modelled with two periods: P0~470+/-10 days (amplitude ~0.64mag) and long secondary period LSP~2700-2850 days (~1.1mag). As measured from CO equivalent width, <Teff>=3600+/-195K. The size, periods, luminosity (<Mbol>=-8.44+/-0.22) and effective temperature are consistent with an M1 supergiant with an initial mass of 22.5+/-2.5Msun and an age of 6.5-10Myr (depending on rotation). This age is in remarkable agreement with most estimates for the recent star formation event in the central parsec. Caution should be taken when using this star as an interferometric reference as it is variable in size, is surrounded by a variable circumstellar environment and large convection cells may form on its photosphere.
207 - O. Pfuhl , M. Haug , F. Eisenhauer 2012
We present design results of the 2nd generation VLTI instrument GRAVITY beam stabilization and light injection subsystems. Designed to deliver micro-arcsecond astrometry, GRAVITY requires an unprecedented stability of the VLTI optical train. To meet the astrometric requirements, we have developed a dedicated laser guiding system, correcting the longitudinal and lateral pupil position as well as the image jitter. The actuators for the correction are provided by four fiber coupler units located in the GRAVITY cryostat. Each fiber coupler picks the light of one telescope and stabilizes the beam. Furthermore each unit provides field de-rotation, polarization analysis as well as atmospheric piston correction. Using a novel roof prism design offers the possibility of on-axis as well as off-axis fringe tracking without changing the optical path. Finally the stabilized beam is injected with minimized losses into single-mode fibers via parabolic mirrors. We present lab results of the first guiding- as well as the first fiber coupler prototype regarding the closed loop performance and the optical quality. Based on the lab results we discuss the on-sky performance of the system and the implications concerning the sensitivity of GRAVITY.
155 - O. Pfuhl , T. K. Fritz , M. Zilka 2011
We present spatially resolved imaging and integral field spectroscopy data for 450 cool giant stars within 1,pc from Sgr,A*. We use the prominent CO bandheads to derive effective temperatures of individual giants. Additionally we present the deepest spectroscopic observation of the Galactic Center so far, probing the number of B9/A0 main sequence stars ($2.2-2.8,M_odot$) in two deep fields. From spectro-photometry we construct a Hertzsprung-Russell diagram of the red giant population and fit the observed diagram with model populations to derive the star formation history of the nuclear cluster. We find that (1) the average nuclear star-formation rate dropped from an initial maximum $sim10$,Gyrs ago to a deep minimum 1-2,Gyrs ago and increased again during the last few hundred Myrs, and (2) that roughly 80% of the stellar mass formed more than 5,Gyrs ago; (3) mass estimates within $rm Rsim1,pc$ from Sgr,A* favor a dominant star formation mode with a normal Chabrier/Kroupa initial mass function for the majority of the past star formation in the Galactic Center. The bulk stellar mass seems to have formed under conditions significantly different from the young stellar disks, perhaps because at the time of the formation of the nuclear cluster the massive black hole and its sphere of influence was much smaller than today.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا