ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the indirect effects of new physics on the phenomenology of the Higgs-like particle. Assuming that the recently observed state belongs to a light electroweak doublet scalar and that the SU(2)_L x U(1)_Y symmetry is linearly realized, we para metrize these effects in terms of an effective Lagrangian at the electroweak scale. We choose the dimension--six operator basis which allows us to make better use of all the available data to constrain the coefficients of the dimension-six operators. We perform a global 6--parameter fit which allows simultaneous determination of the standard model scalar couplings to gluons, electroweak gauge bosons, bottom quarks, and tau leptons. The results are based on the data released at Moriond 2013. Moreover, our formalism leads to strong constraints on the electroweak triple gauge boson couplings. Note added: The analysis has been updated with a NEW GLOBAL 6-PARAMETER FIT with all the public data available after Moriond 2013. Updates of this analysis are provided at the website http://hep.if.usp.br/Higgs, as well as n
In the framework of effective Lagrangians with the SU(2)_L x U(1)_Y symmetry linearly realized, modifications of the couplings of the Higgs field to the electroweak gauge bosons are related to anomalous triple gauge couplings (TGCs). Here, we show th at the analysis of the latest Higgs boson production data at the LHC and Tevatron give rise to strong bounds on TGCs that are complementary to those from direct TGC analysis. We present the constraints on TGCs obtained by combining all available data on direct TGC studies and on Higgs production analysis. Note added: The analysis has been updated with all the public data available as November 2013. Updates of this analysis are provided at http://hep.if.usp.br/Higgs
We study the indirect effects of new physics on the phenomenology of the recently discovered Higgs-like particle. In a model independent framework these effects can be parametrized in terms of an effective Lagrangian at the electroweak scale. In a th eory in which the SU(2)_L x U(1)_Y gauge symmetry is linearly realized they appear at lowest order as dimension--six operators, containing all the SM fields including the light scalar doublet, with unknown coefficients. We discuss the choice of operator basis which allows us to make better use of all the available data on the new state, triple gauge boson vertex and electroweak precision tests, to determine the coefficients of the new operators. We illustrate our present knowledge of those by performing a global fit to the existing data which allows simultaneous determination of the eight relevant parameters quantifying the Higgs couplings to gluons, electroweak gauge bosons, bottom quarks, and tau leptons. We find that for all scenarios considered the standard model predictions for each individual Higgs coupling and observable are within the corresponding 68% CL allowed range. We finish by commenting on the implications of the results for unitarity of processes at higher energies. Note added: The analysis has been updated with all the public data available by October 2013. Updates of this analysis are provided at http://hep.if.usp.br/Higgs as well as n
The recently announced Higgs discovery marks the dawn of the direct probing of the electroweak symmetry breaking sector. Sorting out the dynamics responsible for electroweak symmetry breaking now requires probing the Higgs interactions and searching for additional states connected to this sector. In this work we analyze the constraints on Higgs couplings to the standard model gauge bosons using the available data from Tevatron and LHC. We work in a model--independent framework expressing the departure of the Higgs couplings to gauge bosons by dimension--six operators. This allows for independent modifications of its couplings to gluons, photons and weak gauge bosons while still preserving the Standard Model (SM) gauge invariance. Our results indicate that best overall agreement with data is obtained if the cross section of Higgs production via gluon fusion is suppressed with respect to its SM value and the Higgs branching ratio into two photons is enhanced, while keeping the production and decays associated to couplings to weak gauge bosons close to their SM prediction.
Several extensions of the Standard Model predict the existence of new neutral spin-1 resonances associated to the electroweak symmetry breaking sector. Using the data from ATLAS (with integrated luminosity of L=1.02 fb^{-1}) and CMS (with integrated luminosity of L=1.55 fb^{-1}) on the production of W+W- pairs through the process pp -> l^+ l^{prime -} sla{E}_T, we place model independent bounds on these new vector resonances masses, couplings and widths. Our analyses show that the present data excludes new neutral vector resonances with masses up to 1-2.3 TeV depending on their couplings and widths. We also demonstrate how to extend our analysis framework to different models working a specific example.
We study the potential of the CERN Large Hadron Collider (LHC) to probe the spin of new massive vector boson resonances predicted by Higgsless models. We consider its production via weak boson fusion which relies only on the coupling between the new resonances and the weak gauge bosons. We show that the LHC will be able to unravel the spin of the particles associated with the partial restoration of unitarity in vector boson scattering for integrated luminosities of 150-560 fb^-1, depending on the new state mass and on the method used in the analyses.
We study the collider phenomenology of bilinear R-parity violating supergravity, the simplest effective model for supersymmetric neutrino masses accounting for the current neutrino oscillation data. At the CERN Large Hadron Collider the center-of-mas s energy will be high enough to probe directly these models through the search for the superpartners of the Standard Model (SM) particles. We analyze the impact of R-parity violation on the canonical supersymmetry searches - that is, we examine how the decay of the lightest supersymmetric particle (LSP) via bilinear R-parity violating interactions degrades the average expected missing momentum of the reactions and show how this diminishes the reach in the usual channels for supersymmetry searches. However, the R-parity violating interactions lead to an enhancement of the final states containing isolated same-sign di-leptons and trileptons, compensating the reach loss in the fully inclusive channel. We show how the searches for displaced vertices associated to LSP decay substantially increase the coverage in supergravity parameter space, giving the corresponding reaches for two reference luminosities of 10 and 100 fb$^{-1}$ and compare with those of the R-parity conserving minimal supergravity model.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا