ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraining anomalous Higgs interactions

124   0   0.0 ( 0 )
 نشر من قبل Juan Gonzalez-Fraile
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The recently announced Higgs discovery marks the dawn of the direct probing of the electroweak symmetry breaking sector. Sorting out the dynamics responsible for electroweak symmetry breaking now requires probing the Higgs interactions and searching for additional states connected to this sector. In this work we analyze the constraints on Higgs couplings to the standard model gauge bosons using the available data from Tevatron and LHC. We work in a model--independent framework expressing the departure of the Higgs couplings to gauge bosons by dimension--six operators. This allows for independent modifications of its couplings to gluons, photons and weak gauge bosons while still preserving the Standard Model (SM) gauge invariance. Our results indicate that best overall agreement with data is obtained if the cross section of Higgs production via gluon fusion is suppressed with respect to its SM value and the Higgs branching ratio into two photons is enhanced, while keeping the production and decays associated to couplings to weak gauge bosons close to their SM prediction.

قيم البحث

اقرأ أيضاً

We systematically study the modifications in the couplings of the Higgs boson, when identified as a pseudo Nambu-Goldstone boson of a strong sector, in the light of LHC Run 1 and Run 2 data. For the minimal coset SO(5)/SO(4) of the strong sector, we focus on scenarios where the standard model left- and right-handed fermions (specifically, the top and bottom quarks) are either in 5 or in the symmetric 14 representation of SO(5). Going beyond the minimal 5L-5R representation, to what we call here the extended models, we observe that it is possible to construct more than one invariant in the Yukawa sector. In such models, the Yukawa couplings of the 125 GeV Higgs boson undergo nontrivial modifications. The pattern of such modifications can be encoded in a generic phenomenological Lagrangian which applies to a wide class of such models. We show that the presence of more than one Yukawa invariant allows the gauge and Yukawa coupling modifiers to be decorrelated in the extended models, and this decorrelation leads to a relaxation of the bound on the compositeness scale (f > 640 GeV at 95% CL, as compared to f > 1 TeV for the minimal 5L-5R representation model). We also study the Yukawa coupling modifications in the context of the next-to-minimal strong sector coset SO(6)/SO(5) for fermion-embedding up to representations of dimension 20. While quantifying our observations, we have performed a detailed chi-square fit using the ATLAS and CMS combined Run 1 and available Run 2 data.
We use the LHC Higgs data to derive updated constraints on electroweak-scale sterile neutrinos that naturally occur in many low-scale seesaw extensions of the Standard Model to explain the neutrino masses. We also analyze the signal sensitivity for a new final state involving a single charged lepton and two jets with missing energy, which arises from the decay of sterile neutrinos produced through the Higgs and $W,Z$ boson mediated processes at the LHC. Future prospects of these sterile neutrino signals in precision Higgs measurements, as well as at a future 100 TeV collider, are also discussed.
We study the effects of top-Higgs anomalous coupling in the production of a pair of Higgs boson via gluon fusion at the Large Hadron Collider (LHC). The introduction of anomalous $ttH$ coupling can alter the hadronic double Higgs boson cross section and can lead to characteristic changes in certain kinematic distributions. We perform a global analysis based on available LHC data on the Higgs to constrain the parameters of $ttH$ anomalous coupling. Possible overlap of the predictions due to anomalous $ttH$ coupling with those due to anomalous trilinear Higgs coupling is also studied. We briefly discuss the effect of the anomalous $ttH$ coupling on the $HZ$ production via gluon fusion which is one of the main backgrounds in the $HH to gammagamma b {bar b}$ channel.
Higgs boson production in association with a photon ($H$+$gamma$) offers a promising channel to test the Higgs boson to photon coupling at various energy scales. Its potential sensitivity to anomalous couplings of the Higgs boson has not been explore d with the proton-proton collision data. In this paper, we reinterpret the latest ATLAS $H$+$gamma$ resonance search results within the Standard Model effective field theory (EFT) framework, using 36.1 fb$^{-1}$ of proton-proton collision data recorded with the ATLAS detector at $sqrt{s}=13$ TeV. Constraints on the Wilson coefficients of dimension-six EFT operators related to the Higgs boson to photon coupling are provided for the first time in the $H$+$gamma$ final state at the LHC.
We explore a scenario in the Standard Model in which dimension four Yukawa couplings are either forbidden by a symmetry, or happen to be very tiny, and the Yukawa interactions are dominated by effective dimension six interactions. In this case, the H iggs interactions to the fermions are enhanced in a large way, whereas its interaction with the gauge bosons remains the same as in the Standard Model. In hadron colliders, Higgs boson production via gluon gluon fusion increases by a factor of nine. Higgs decay widths to fermion anti-fermion pairs also increase by the same factor, whereas the decay widths to photon photon and gamma Z are reduced. Current Tevatron exclusion range for the Higgs mass increases to ~ 142-200 GeV in our scenario, and new physics must appear at a scale below a TeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا