ترغب بنشر مسار تعليمي؟ اضغط هنا

371 - S. Jouvel , O. Host , O. Lahav 2013
The Cluster Lensing And Supernovae survey with Hubble (CLASH) is an Hubble Space Telescope (HST) Multi-Cycle Treasury program observing 25 massive galaxy clusters. CLASH observations are carried out in 16 bands from UV to NIR to derive accurate and r eliable estimates of photometric redshifts. We present the CLASH photometric redshifts and study the photometric redshift accuracy of the arcs in more detail for the case of MACS1206.2-0847. We use the publicly available Le Phare and BPZ photometric redshift codes on 17 CLASH galaxy clusters. Using Le Phare code for objects with StoN>=10, we reach a precision of 3%(1+z) for the strong lensing arcs, which is reduced to 2.4%(1+z) after removing outliers. For galaxies in the cluster field the corresponding values are 4%(1+z) and 3%(1+z). Using mock galaxy catalogues, we show that 3%(1+z) precision is what one would expect from the CLASH photometry when taking into account extinction from dust, emission lines and the finite range of SEDs included in the photo-z template library. We study photo-z results for different aperture photometry and find that the SExtractor isophotal photometry works best. Le Phare and BPZ give similar photo-z results for the strong lensing arcs as well as galaxies of the cluster field. Results are improved when optimizing the photometric aperture shape showing an optimal aperture size around 1 radius giving results which are equivalent to isophotal photometry. Tailored photometry of the arcs improve the photo-z results.
We consider direct dark matter detection rates and investigate the difference between a standard Maxwell-Boltzmann velocity distribution and a realistic distribution like the ones extracted from numerical N-body simulations. Sizable differences are o bserved when such results are compared to the standard Maxwell-Boltzmann distribution. For a light target both the total rate and the annual modulation are reduced by ~25%. For a heavy target the total rate is virtually unchanged, whereas the annual modulation is modified by up to 50%, depending on the WIMP mass and detector energy threshold. We also consider the effect of a possible velocity anisotropy, and the effect is found to be largest for a light target For the realistic velocity distribution the anisotropy may reduce the annual modulation, in contrast to the Maxwell-Boltzmann case.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا