ترغب بنشر مسار تعليمي؟ اضغط هنا

This is a reply to the comment from Khemani, Moessner and Sondhi (KMS) [arXiv:2109.00551] on our manuscript [Phys. Rev. Lett. 118, 030401 (2017)]. The main new claim in KMS is that the short-ranged model does not support an MBL DTC phase. We show tha t, even for the parameter values they consider and the system sizes they study, the claim is an artifact of an unusual choice of range for the crucial plots. Conducting a standard finite-size scaling analysis on the same data strongly suggests that the system is in fact a many-body localized (MBL) discrete time crystal (DTC). Furthermore, we have carried out additional simulations at larger scales, and provide an analytic argument, which fully support the conclusions of our original paper. We also show that the effect of boundary conditions, described as essential by KMS, is exactly what one would expect, with boundary effects decreasing with increasing system size. The other points in KMS are either a rehashing of points already in the literature (for the long-ranged model) or are refuted by a proper finite-size scaling analysis.
We demonstrate that the prethermal regime of periodically-driven, classical many-body systems can host non-equilibrium phases of matter. In particular, we show that there exists an effective Hamiltonian, which captures the dynamics of ensembles of cl assical trajectories, despite the breakdown of this description at the single trajectory level. In addition, we prove that the effective Hamiltonian can host emergent symmetries protected by the discrete time-translation symmetry of the drive. The spontaneous breaking of such an emergent symmetry leads to a sub-harmonic response, characteristic of time crystalline order, that survives to exponentially late times. To this end, we numerically demonstrate the existence of prethermal time crystals in both a one-dimensional, long-range interacting spin chain and a nearest-neighbor spin model on a two-dimensional square lattice.
The $mathbb{Z}_2 times mathbb{Z}_2$ symmetry protected topological (SPT) phase hosts a robust boundary qubit at zero temperature. At finite energy density, the SPT phase is destroyed and bulk observables equilibrate in finite time. Nevertheless, we p redict parametric regimes in which the boundary qubit survives to arbitrarily high temperature, with an exponentially longer coherence time than that of the thermal bulk degrees of freedom. In a dual picture, the persistence of the qubit stems from the inability of the bulk to absorb the virtual $mathbb{Z}_2 times mathbb{Z}_2$ domain walls emitted by the edge during the relaxation process. We confirm the long coherence time by exact diagonalization and connect it to the presence of a pair of conjugate almost strong zero modes. Our results provide a route to experimentally construct long-lived coherent boundary qubits at infinite temperature in disorder-free systems.
We show that in certain one-dimensional spin chains with open boundary conditions, the edge spins retain memory of their initial state for very long times. The long coherence times do not require disorder, only an ordered phase. In the integrable Isi ng and XYZ chains, the presence of a strong zero mode means the coherence time is infinite, even at infinite temperature. When Ising is perturbed by interactions breaking the integrability, the coherence time remains exponentially long in the perturbing couplings. We show that this is a consequence of an edge almost strong zero mode that almost commutes with the Hamiltonian. We compute this operator explicitly, allowing us to estimate accurately the plateau value of edge spin autocorrelator.
Despite being forbidden in equilibrium, spontaneous breaking of time translation symmetry can occur in periodically driven, Floquet systems with discrete time-translation symmetry. The period of the resulting discrete time crystal is quantized to an integer multiple of the drive period, arising from a combination of collective synchronization and many body localization. Here, we consider a simple model for a one dimensional discrete time crystal which explicitly reveals the rigidity of the emergent oscillations as the drive is varied. We numerically map out its phase diagram and compute the properties of the dynamical phase transition where the time crystal melts into a trivial Floquet insulator. Moreover, we demonstrate that the model can be realized with current experimental technologies and propose a blueprint based upon a one dimensional chain of trapped ions. Using experimental parameters (featuring long-range interactions), we identify the phase boundaries of the ion-time-crystal and propose a measurable signature of the symmetry breaking phase transition.
We study the disordered Heisenberg spin chain, which exhibits many body localization at strong disorder, in the weak to moderate disorder regime. A continued fraction calculation of dynamical correlations is devised, using a variational extrapolation of recurrents. Good convergence for the infinite chain limit is shown. We find that the local spin correlations decay at long times as $C sim t^{-beta}$, while the conductivity exhibits a low frequency power law $sigma sim omega^{alpha}$. The exponents depict sub-diffusive behavior $ beta < 1/2, alpha> 0 $ at all finite disorders, and convergence to the scaling result, $alpha+2beta = 1$, at large disorders.
Cytoskeletal networks of biopolymers are cross-linked by a variety of proteins. Experiments have shown that dynamic cross-linking with physiological linker proteins leads to complex stress relaxation and enables network flow at long times. We present a model for the mechanical properties of transient networks. By a combination of simulations and analytical techniques we show that a single microscopic timescale for cross-linker unbinding leads to a broad spectrum of macroscopic relaxation times, resulting in a weak power-law dependence of the shear modulus on frequency. By performing rheological experiments, we demonstrate that our model quantitatively describes the frequency behavior of actin network cross-linked with $alpha$-Actinin-$4$ over four decades in frequency.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا