ترغب بنشر مسار تعليمي؟ اضغط هنا

We derive asymptotic behaviors of the Nambu-Bethe-Salpeter (NBS) wave function at large space separations for systems with more than 2 particles in quantum field theories. To deal with $n$-particles in the center of mass flame coherently, we introduc e the Jacob coordinates of $n$ particles and then combine their $3(n-1)$ coordinates into the one spherical coordinate in $D=3(n-1)$ dimensions. We parametrize on-shell $T$-matrix for $n$-particle system of scalar fields at low energy, using the unitarity constraint of the $S$-matrix. We then express asymptotic behaviors of the NBS wave function for $n$ particles at low energy, in terms of parameters of $T$-matrix, and show that the NBS wave function carry the information of $T$-matrix such as phase shifts and mixing angles of the $n$-particle system in its own asymptotic behavior, so that the NBS wave function can be considered as the scattering wave of $n$-particles in quantum mechanics. This property is one of the essential ingredients of the HAL QCD scheme to define potential from the NBS wave function in quantum field theories such as QCD. Our results, together with an extension to systems with spin 1/2 particles, justify the HAL QCDs definition of potentials for 3 or more nucleons(baryons) in terms the NBS wave functions.
Imaginary-time Nambu-Bethe-Salpeter (NBS) wave function is introduced to extend our previous approach for hadron-hadron interactions on the lattice. Scattering states of hadrons with different energies encoded in the NBS wave-function are utilized to extract non-local hadron-hadron potential. The ground state saturation, which is commonly used in lattice QCD but is hard to be achieved for multi-baryons, is not required. We demonstrate that the present method works efficiently for the nucleon-nucleon interaction (the potential and the phase shift) in the 1S_0 channel.
An extension of the Luschers finite volume method above inelastic thresholds is proposed. It is fulfilled by extendind the procedure recently proposed by HAL-QCD Collaboration for a single channel system. Focusing on the asymptotic behaviors of the N ambu-Bethe-Salpeter (NBS) wave functions (equal-time) near spatial infinity, a coupled channel extension of effective Schrodinger equation is constructed by introducing an energy-independent interaction kernel. Because the NBS wave functions contain the information of T-matrix at long distance, S-matrix can be obtained by solving the coupled channel effective Schrodinger equation in the infinite volume.
Recent progress of lattice QCD study of nuclear forces (potentials) is reviewed. Scattering phase shift is an important observable for two particle system. In lattice QCD, phase shifts are calculated from long distance behavior of Bethe-Salpeter (BS) wave functions by Lueschers finite volume method. For applications to nuclear physics of multi-nucleon system, it is more advantageous to convert the information of phase shifts in the form of potentials. We therefore extend the method so as to generate the potentials from BS wave functions. These potentials are faithful to scattering phase shift by construction, because they can reproduce BS wave functions in which the information of phase shift is embeded in the long distance part.The method was first applied to the central potential in NN system. It is now applied to many objects, such as tensor potential, hyperon potentials, energy dependence of nuclear potentials, and investigations of the repulsive core at short distance.
84 - Noriyoshi Ishii 2007
Five-quark (5Q) picture of Lambda(1405) is studied using quenched lattice QCD with an exotic 5Q operator of Nbar{K} type. To discreminate mere Nbar{K} and Sigmapi scattering states, Hybrid Boundary Condition (HBC), a flavor-dependent boundary conditi on, is imposed on the quark fields along spatial direction. 5Q mass m_{5Q}simeq 1.89 GeV is obtained after the chiral extrapolation to the physical quark mass region, which is too heavy to be identified with Lambda(1405). Then, Lambda(1405) seems neither a pure 3Q state nor a pure 5Q state, and therefore we present an interesting possibility that Lambda(1405) is a mixed state of 3Q and 5Q states.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا