ترغب بنشر مسار تعليمي؟ اضغط هنا

item[Purpose] A recent study revealed that polyethylene (PE) would cause extra carbon-ion attenuation per range shift by 0.45%/cm due to compositional differences in nuclear interactions. The present study aims to assess the influence of PE range com pensators on tumor dose in carbon-ion radiotherapy. item[Methods] Carbon-ion radiation was modeled to be composed of primary carbon ions and secondary particles, for each of which the dose and the relative biological effectiveness (RBE) were estimated at a tumor depth in the middle of spread-out Bragg peak. Assuming exponential behavior for attenuation and yield of these components with depth, the PE effect on dose was calculated for clinical carbon-ion beams and was partly tested by experiment. The two-component model was integrated into a treatment-planning system and the PE effect was estimated in two clinical cases. item[Results] The attenuation per range shift by PE was 0.1%--0.3%/cm in dose and 0.2%--0.4%/cm in RBE-weighted dose, depending on energy and range-modulation width. This translates into reduction of RBE-weighted dose by up to 3% in extreme cases. In the treatment-planning study, however, the effect on RBE-weighted dose to tumor was typically within 1% reduction. item[Conclusions] The extra attenuation of primary carbon ions in PE was partly compensated by increased secondary particles for tumor dose. In practical situations, the PE range compensators would normally cause only marginal errors as compared to intrinsic uncertainties in treatment planning, patient setup, beam delivery, and clinical response.
Purpose: Beam range control is the essence of radiotherapy with heavy charged particles. In conventional broad-beam delivery, fine range adjustment is achieved by insertion of range shifting and compensating materials. In dosimetry, solid phantoms ar e often used for convenience. These materials should ideally be equivalent to water. In this study, we evaluated dosimetric water equivalence of four common plastics, HDPE, PMMA, PET, and POM. Methods: Using the Bethe formula for energy loss, the Gottschalk formula for multiple scattering, and the Sihver formula for nuclear interactions, we calculated the effective densities of the plastics for these interactions. We experimentally measured variation of the Bragg peak of carbon-ion beams by insertion of HDPE, PMMA, and POM, which were compared with analytical model calculations. Results: The theoretical calculation resulted in slightly reduced multiple scattering and severely increased nuclear interactions for HDPE, compared to water and the other plastics. The increase in attenuation of carbon ions for 20-cm range shift was experimentally measured to be 8.9% for HDPE, 2.5% for PMMA, and 0.0% for POM while PET was theoretically estimated to be in between PMMA and POM. The agreement between the measurements and the calculations was about 1% or better. Conclusions: For carbon-ion beams, POM was dosimetrically indistinguishable from water and the best of the plastics examined in this study. The poorest was HDPE, which would reduce the Bragg peak by 0.45% per 1-cm range shift, although with marginal superiority for reduced multiple scattering. Between the two clear plastics, PET would be superior to PMMA in dosimetric water equivalence.
Purpose: In treatment planning of charged-particle radiotherapy, patient heterogeneity is conventionally modeled as variable-density water converted from CT images to best reproduce the stopping power, which may lead to inaccuracies in the handling o f multiple scattering and nuclear interactions. Although similar
A dual-field strategy is often used for tumors with highly complex shapes and/or with large volumes exceeding available field-size in both passive and scanning irradiations with ion beams. Range and setup uncertainties can cause hot and cold doses at the field junction within the target. Such uncertainties will also cause cold doses in the peripheral region of the target. We have developed an algorithm to reduce the sensitivity of the dual-field plan to these uncertainties in scanning irradiations. This algorithm is composed of the following two steps: 1) generating the expanded target volume, and 2) solving the inverse problem where the terms suppressing the dose gradient of individual fields are added into the objective function. The validity of this algorithm is demonstrated through the simulation studies for three extreme cases of two fields with unidirectional, opposing and orthogonal geometries. With the proposed algorithm, we can obtain a more robust plan to minimize the effects of range and setup uncertainties than the conventional plan. Compared to that for the conventional plan, the optimization time for the robust plan increased by a factor of approximately three.
105 - Nobuyuki Kanematsu 2010
A broad-beam-delivery system for heavy-charged-particle radiotherapy often employs multiple collimators and a range-compensating filter, which potentially offer complex beam customization. In treatment planning, it is however difficult for a conventi onal pencil-beam algorithm to deal with these structures due to beam-size growth during transport. This study aims to resolve the problem with a novel computational model. The pencil beams are initially defined at the range compensating filter with angular-acceptance correction for the upstream collimators followed by the range compensation effects. They are individually transported with possible splitting near the downstream collimator edges to deal with its fine structure. The dose distribution for a carbon-ion beam was calculated and compared with existing experimental data. The penumbra sizes of various collimator edges agreed between them to a submillimeter level. This beam-customization model will complete an accurate and efficient dose-calculation algorithm for treatment planning with heavy charged particles.
95 - Nobuyuki Kanematsu 2009
This work addresses computing techniques for dose calculations in treatment planning with proton and ion beams, based on an efficient kernel-convolution method referred to as grid-dose spreading (GDS) and accurate heterogeneity-correction method refe rred to as Gaussian beam splitting. The original GDS algorithm suffered from distortion of dose distribution for beams tilted with respect to the dose-grid axes. Use of intermediate grids normal to the beam field has solved the beam-tilting distortion. Interplay of arrangement between beams and grids was found as another intrinsic source of artifact. Inclusion of rectangular-kernel convolution in beam transport, to share the beam contribution among the nearest grids in a regulatory manner, has solved the interplay problem. This algorithmic framework was applied to a tilted proton pencil beam and a broad carbon-ion beam. In these cases, while the elementary pencil beams individually split into several tens, the calculation time increased only by several times with the GDS algorithm. The GDS and beam-splitting methods will complementarily enable accurate and efficient dose calculations for radiotherapy with protons and ions.
The pencil-beam model is valid only when elementary Gaussian beams are small enough with respect to lateral heterogeneity of a medium, which is not always the case in heavy charged particle radiotherapy. This work addresses a solution for this proble m by applying our discovery of self-similar nature of Gaussian distributions. In this method, Gaussian beams split into narrower and deflecting daughter beams when their size has exceeded the lateral heterogeneity limit. They will be automatically arranged with modulated areal density for accurate and efficient dose calculations. The effectiveness was assessed in an carbon-ion beam experiment in presence of steep range compensation, where the splitting calculation reproduced the detour effect of imperfect compensation amounting up to about 10% or as large as the lateral particle disequilibrium effect. The efficiency was analyzed in calculations for carbon-ion and proton radiations with a heterogeneous phantom model, where the splitting calculations took about a minute and were factor of 5 slower than the non-splitting ones. The beam-splitting method is reasonably accurate, efficient, and general so that it can be potentially used in various pencil-beam algorithms.
84 - Nobuyuki Kanematsu 2008
Dose calculation for radiotherapy with protons and heavier ions deals with a large volume of path integrals involving a scattering power of body tissue. This work provides a simple model for such demanding applications. There is an approximate linear ity between RMS end-point displacement and range of incident particles in water, empirically found in measurements and detailed calculations. This fact was translated into a simple linear formula, from which the scattering power that is only inversely proportional to residual range was derived. The simplicity enabled analytical formulation for ions stopping in water, which was designed to be equivalent with the extended Highland model and agreed with measurements within 2% or 0.02 cm in RMS displacement. The simplicity will also improve the efficiency of numerical path integrals in the presence of heterogeneity.
90 - Nobuyuki Kanematsu 2008
This study provides an accurate, efficient, and simple multiple scattering formulation for heavy charged particles such as protons and heavier ions with a new form of scattering power that is a key quantity for beam transport in matter. The Highland formula for multiple scattering angle was modified to a scattering-power formula to be used within the Fermi-Eyges theory in the presence of heterogeneity. An analytical formula for RMS end-point displacement in homogeneous matter was also derived for arbitrary ions. The formulation was examined in terms of RMS angles and displacements in comparison with other formulations and measurements. The results for protons, helium ions, and carbon ions in water agreed with them at a level of 2% or the differences were discussed.
A model for beam customization with collimators and a range-compensating filter based on the phase-space theory for beam transport is presented for dose distribution calculation in treatment planning of radiotherapy with protons and heavier ions. Ind ependent handling of pencil beams in conventional pencil-beam algorithms causes unphysical collimator-height dependence in the middle of large fields, which is resolved by the framework comprised of generation, transport, collimation, regeneration, range-compensation, and edge-sharpening processes with a matrix of pencil beams. The model was verified to be consistent with measurement and analytic estimation at a submillimeter level in penumbra of individual collimators with a combinational-collimated carbon-ion beam. The model computation is fast, accurate, and readily applicable to pencil-beam algorithms in treatment planning with capability of combinational collimation to make best use of the beam-customization devices.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا