ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper, we consider a reduction of a new system of partial difference equations, which was obtained in our previous paper (Joshi and Nakazono, arXiv:1906.06650) and shown to be consistent around a cuboctahedron. We show that this system reduce s to $A_2^{(1)ast}$-type discrete Painleve equations by considering a periodic reduction of a three-dimensional lattice constructed from overlapping cuboctahedra.
Discrete Painleve equations are nonlinear, nonautonomous difference equations of second-order. They have coefficients that are explicit functions of the independent variable $n$ and there are three different types of equations according to whether th e coefficient functions are linear, exponential or elliptic functions of $n$. In this paper, we focus on the elliptic type and give a review of the construction of such equations on the $E_8$ lattice. The first such construction was given by Sakai cite{SakaiH2001:MR1882403}. We focus on recent developments giving rise to more examples of elliptic discrete Painleve equations.
We introduce the concept of $omega$-lattice, constructed from $tau$ functions of Painleve systems, on which quad-equations of ABS type appear. In particular, we consider the $A_5^{(1)}$- and $A_6^{(1)}$-surface $q$-Painleve systems corresponding affi ne Weyl group symmetries are of $(A_2+A_1)^{(1)}$- and $(A_1+A_1)^{(1)}$-types, respectively.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا