ترغب بنشر مسار تعليمي؟ اضغط هنا

This digital book contains a practical and comprehensive introduction of everything related to deep learning in the context of physical simulations. As much as possible, all topics come with hands-on code examples in the form of Jupyter notebooks to quickly get started. Beyond standard supervised learning from data, well look at physical loss constraints, more tightly coupled learning algorithms with differentiable simulations, as well as reinforcement learning and uncertainty modeling. We live in exciting times: these methods have a huge potential to fundamentally change what computer simulations can achieve.
201 - Li-Wei Chen , Nils Thuerey 2021
The present study investigates the accurate inference of Reynolds-averaged Navier-Stokes solutions for the compressible flow over aerofoils in two dimensions with a deep neural network. Our approach yields networks that learn to generate precise flow fields for varying body-fitted, structured grids by providing them with an encoding of the corresponding mapping to a canonical space for the solutions. We apply the deep neural network model to a benchmark case of incompressible flow at randomly given angles of attack and Reynolds numbers and achieve an improvement of more than an order of magnitude compared to previous work. Further, for transonic flow cases, the deep neural network model accurately predicts complex flow behaviour at high Reynolds numbers, such as shock wave/boundary layer interaction, and quantitative distributions like pressure coefficient, skin friction coefficient as well as wake total pressure profiles downstream of aerofoils. The proposed deep learning method significantly speeds up the predictions of flow fields and shows promise for enabling fast aerodynamic designs.
Recently, physics-driven deep learning methods have shown particular promise for the prediction of physical fields, especially to reduce the dependency on large amounts of pre-computed training data. In this work, we target the physics-driven learnin g of complex flow fields with high resolutions. We propose the use of emph{Convolutional neural networks} (CNN) based U-net architectures to efficiently represent and reconstruct the input and output fields, respectively. By introducing Navier-Stokes equations and boundary conditions into loss functions, the physics-driven CNN is designed to predict corresponding steady flow fields directly. In particular, this prevents many of the difficulties associated with approaches employing fully connected neural networks. Several numerical experiments are conducted to investigate the behavior of the CNN approach, and the results indicate that a first-order accuracy has been achieved. Specifically for the case of a flow around a cylinder, different flow regimes can be learned and the adhered twin-vortices are predicted correctly. The numerical results also show that the training for multiple cases is accelerated significantly, especially for the difficult cases at low Reynolds numbers, and when limited reference solutions are used as supplementary learning targets.
We propose a new generative model for 3D garment deformations that enables us to learn, for the first time, a data-driven method for virtual try-on that effectively addresses garment-body collisions. In contrast to existing methods that require an un desirable postprocessing step to fix garment-body interpenetrations at test time, our approach directly outputs 3D garment configurations that do not collide with the underlying body. Key to our success is a new canonical space for garments that removes pose-and-shape deformations already captured by a new diffused human body model, which extrapolates body surface properties such as skinning weights and blendshapes to any 3D point. We leverage this representation to train a generative model with a novel self-supervised collision term that learns to reliably solve garment-body interpenetrations. We extensively evaluate and compare our results with recently proposed data-driven methods, and show that our method is the first to successfully address garment-body contact in unseen body shapes and motions, without compromising realism and detail.
We propose a novel method to reconstruct volumetric flows from sparse views via a global transport formulation. Instead of obtaining the space-time function of the observations, we reconstruct its motion based on a single initial state. In addition w e introduce a learned self-supervision that constrains observations from unseen angles. These visual constraints are coupled via the transport constraints and a differentiable rendering step to arrive at a robust end-to-end reconstruction algorithm. This makes the reconstruction of highly realistic flow motions possible, even from only a single input view. We show with a variety of synthetic and real flows that the proposed global reconstruction of the transport process yields an improved reconstruction of the fluid motion.
Recent implicit neural rendering methods have demonstrated that it is possible to learn accurate view synthesis for complex scenes by predicting their volumetric density and color supervised solely by a set of RGB images. However, existing methods ar e restricted to learning efficient representations of static scenes that encode all scene objects into a single neural network, and lack the ability to represent dynamic scenes and decompositions into individual scene objects. In this work, we present the first neural rendering method that decomposes dynamic scenes into scene graphs. We propose a learned scene graph representation, which encodes object transformation and radiance, to efficiently render novel arrangements and views of the scene. To this end, we learn implicitly encoded scenes, combined with a jointly learned latent representation to describe objects with a single implicit function. We assess the proposed method on synthetic and real automotive data, validating that our approach learns dynamic scenes -- only by observing a video of this scene -- and allows for rendering novel photo-realistic views of novel scene compositions with unseen sets of objects at unseen poses.
In this paper, we present ScalarFlow, a first large-scale data set of reconstructions of real-world smoke plumes. We additionally propose a framework for accurate physics-based reconstructions from a small number of video streams. Central components of our algorithm are a novel estimation of unseen inflow regions and an efficient regularization scheme. Our data set includes a large number of complex and natural buoyancy-driven flows. The flows transition to turbulent flows and contain observable scalar transport processes. As such, the ScalarFlow data set is tailored towards computer graphics, vision, and learning applications. The published data set will contain volumetric reconstructions of velocity and density, input image sequences, together with calibration data, code, and instructions how to recreate the commodity hardware capture setup. We further demonstrate one of the many potential application areas: a first perceptual evaluation study, which reveals that the complexity of the captured flows requires a huge simulation resolution for regular solvers in order to recreate at least parts of the natural complexity contained in the captured data.
This paper proposes a novel framework to evaluate fluid simulation methods based on crowd-sourced user studies in order to robustly gather large numbers of opinions. The key idea for a robust and reliable evaluation is to use a reference video from a carefully selected real-world setup in the user study. By conducting a series of controlled user studies and comparing their evaluation results, we observe various factors that affect the perceptual evaluation. Our data show that the availability of a reference video makes the evaluation consistent. We introduce this approach for computing scores of simulation methods as visual accuracy metric. As an application of the proposed framework, a variety of popular simulation methods are evaluated.
Numerical weather prediction has traditionally been based on physical models of the atmosphere. Recently, however, the rise of deep learning has created increased interest in purely data-driven medium-range weather forecasting with first studies expl oring the feasibility of such an approach. To accelerate progress in this area, the WeatherBench benchmark challenge was defined. Here, we train a deep residual convolutional neural network (Resnet) to predict geopotential, temperature and precipitation at 5.625 degree resolution up to 5 days ahead. To avoid overfitting and improve forecast skill, we pretrain the model using historical climate model output before fine-tuning on reanalysis data. The resulting forecasts outperform previous submissions to WeatherBench and are comparable in skill to a physical baseline at similar resolution. We also analyze how the neural network creates its predictions and find that, with some exceptions, it is compatible with physical reasoning. Finally, we perform scaling experiments to estimate the potential skill of data-driven approaches at higher resolutions.
We present a novel method to reconstruct a fluids 3D density and motion based on just a single sequence of images. This is rendered possible by using powerful physical priors for this strongly under-determined problem. More specifically, we propose a novel strategy to infer density updates strongly coupled to previous and current estimates of the flow motion. Additionally, we employ an accurate discretization and depth-based regularizers to compute stable solutions. Using only one view for the reconstruction reduces the complexity of the capturing setup drastically and could even allow for online video databases or smart-phone videos as inputs. The reconstructed 3D velocity can then be flexibly utilized, e.g., for re-simulation, domain modification or guiding purposes. We will demonstrate the capacity of our method with a series of synthetic test cases and the reconstruction of real smoke plumes captured with a Raspberry Pi camera.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا