ترغب بنشر مسار تعليمي؟ اضغط هنا

191 - Nilmani Mathur , Gargi Shaw 2020
We propose a mathematical model to analyze the time evolution of the total number of infected population with Covid-19 disease at a region in the ongoing pandemic. Using the available data of Covid-19 infected population on various countries we formu late a model which can successfully track the time evolution from early days to the saturation period in a given wave of this infectious disease. It involves a set of effective parameters which can be extracted from the available data. Using those parameters the future trajectories of the disease spread can also be projected. A set of differential equations is also proposed whose solutions are these time evolution trajectories. Using such a formalism we project the future time evolution trajectories of infection spread for a number of countries where the Covid-19 infection is still rapidly rising.
We report the first lattice quantum chromodynamics (QCD) study of deuteron($np$)-like dibaryons with heavy quark flavours. These include particles with following dibaryon structures and valence quark contents: $Sigma_cXi_{cc} (uucucc)$, $Omega_cOmega _{cc} (sscscc)$, $Sigma_bXi_{bb} (uububb)$, $Omega_bOmega_{bb} (ssbsbb)$ and $Omega_{ccb}Omega_{cbb} (ccbcbb)$, and with spin ($J$)-parity ($P$), $J^{P} equiv 1^{+}$. Using a state-of-the art lattice QCD calculation, after controlling relevant systematic errors, we unambiguously find that the ground state masses of dibaryons $Omega_cOmega_{cc} (sscscc)$, $Omega_bOmega_{bb} (ssbsbb)$ and $Omega_{ccb}Omega_{cbb} (ccbcbb)$ are below their respective two-baryon thresholds, suggesting the presence of bound states which are stable under strong and electromagnetic interactions. We also predict their masses precisely. For dibaryons $Sigma_cXi_{cc} (uucucc)$, and $Sigma_bXi_{bb} (uububb)$, we could not reach to a definitive conclusion about the presence of any bound state due to large systematics associated with these states. We also find that the binding of these dibaryons becomes stronger as they become heavier in mass. This study also opens up the possibility of the existence of many other exotic nuclei, which can be formed through the fusion of heavy baryons, similar to the formation of nuclei of elements in the Periodic Table.
We present the energy spectra of the low lying doubly-charmed baryons using lattice quantum chromodynamics. We precisely predict the ground state mass of the charmed-strange Omega(cc) (1/2+) baryon to be 3712(11)(12) MeV which could well be the next doubly-charmed baryon to be discovered at the LHCb experiment at CERN. We also predict masses of other doubly-charmed strange baryons with quantum numbers 3/2+, 1/2-, and 3/2-.
We report the ground state masses of hadrons containing at least one charm and one bottom quark using lattice quantum chromodynamics. These include mesons with spin (J)-parity (P) quantum numbers J(P): 0(-), 1(-), 1(+) and 0(+) and the spin-1/2 and 3 /2 baryons. Among these hadrons only the ground state of 0(-) is known experimentally and therefore our predictions provide important information for the experimental discovery of all other hadrons with these quark contents.
We present the ground and excited state spectra of $Omega^{0}_{c}$ baryons with spin up to 7/2 from lattice quantum chromodynamics with dynamical quark fields. Based on our lattice results, we predict the quantum numbers of five $Omega^{0}_{c}$ baryo ns, which have recently been observed by the LHCb Collaboration. Our results strongly indicate that the observed states $Omega_c(3000)^0$ and $Omega_c(3050)^0$ have spin-parity $J^P = 1/2^{-}$, the states $Omega_c(3066)^0$ and $Omega_c(3090)^0$ have $J^P = 3/2^{-}$, whereas $Omega_c(3119)^0$ is possibly a $5/2^{-}$ state.
We present ground state spectra of mesons containing a charm and a bottom quark. For the charm quark we use overlap valence quarks while a non-relativistic formulation is utilized for the bottom quark on a background of 2+1+1 flavors HISQ gauge confi gurations generated by the MILC collaboration. The hyperfine splitting between $1S$ states of $B_c$ mesons is found to be $56^{+4}_{-3}$ MeV. We also study the baryons containing only charm and bottom quarks and predict their ground state masses. Results are obtained at three lattice spacings.
We discuss the significance of charm baryon spectroscopy in hadron physics and review the recent developments of the spectra of charmed baryons in lattice calculations. Special emphasis is given on the recent studies of highly excited charm baryon st ates. Recent precision lattice measurements of the low lying charm and bottom baryons are also reviewed.
We present the ground and excited state spectra of doubly charmed baryons from lattice QCD with dynamical quark fields. Calculations are performed on anisotropic lattices of size 16^3 X 128, with inverse spacing in temporal direction 1/a_t = 5.67(4) GeV and with a pion mass of about 390 MeV. A large set of baryonic operators that respect the symmetries of the lattice yet which retain a memory of their continuum analogues are used. These operators transform as irreducible representations of SU(3) symmetry for flavor, SU(4) symmetry for Dirac spins of quarks and O(3) for spatial symmetry. The distillation method is utilized to generate baryon correlation functions which are analysed using the variational fitting method to extract excited states. The lattice spectra obtained have baryonic states with well-defined total spins up to 7/2 and the pattern of low lying states does not support the diquark picture for doubly charmed baryons. On the contrary the calculated spectra are remarkably similar to the expectations from models with an SU(6)X O(3) symmetry. Various spin dependent energy splittings between the extracted states are also evaluated.
We present the ground and excited state spectra of singly, doubly and triply charmed baryons by using dynamical lattice QCD. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their con tinuum analogues are utilized. Using novel computational techniques correlation functions of these operators are generated and the variational method is exploited to extract excited states. The lattice spectra that we obtain have baryonic states with well-defined total spins up to 7/2 and the low lying states remarkably resemble the expectations of quantum numbers from SU(6) $otimes$ O(3) symmetry. Various energy splittings between the extracted states, including splittings due to hyperfine as well as spin-orbit coupling, are considered and those are also compared against similar energy splittings at other quark masses.
We present the ground and excited state spectra of singly, doubly and triply-charmed baryons by using dynamical lattice QCD. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their con tinuum analogues are utilized. These operators transform as irreducible representations of SU(3)$_F$ symmetry for flavour, SU(4) symmetry for Dirac spins of quarks and O(3) symmetry for orbital angular momenta. Using novel computational techniques correlation functions of these operators are generated and the variational method is exploited to extract excited states. The lattice spectra that we obtain have baryonic states with well-defined total spins up to 7/2 and the low lying states remarkably resemble the expectations of quantum numbers from SU(6)$otimes$O(3) symmetry.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا