ترغب بنشر مسار تعليمي؟ اضغط هنا

We numerically investigate the effect of non-condensable gas inside a vapor bubble on bubble dynamics, collapse pressure and pressure impact of spherical and aspherical bubble collapses. Free gas inside a vapor bubble has a damping effect that can we aken the pressure wave and enhance the bubble rebound. To estimate this effect numerically, we derive and validate a multi-component model for vapor bubbles containing gas. For the cavitating liquid and the non-condensable gas, we employ a homogeneous mixture model with a coupled equation of state for all components. The cavitation model for the cavitating liquid is a barotropic thermodynamic equilibrium model. Compressibility of all phases is considered in order to capture the shock wave of the bubble collapse. After validating the model with an analytical energy partitioning model, simulations of collapsing wall-attached bubbles with different stand-off distances are performed. The effect of the non-condensable gas on rebound and damping of the emitted shock wave is well captured.
We consider the collapse behavior of cavitation bubbles near walls under high ambient pressure conditions. Generic configurations with different stand-off distances are investigated by numerical simulation using a fully compressible two-phase flow so lver including phase change. The results show that the stand-off distance has significant effects on collapse dynamics, micro-jet formation, rebound, and maximum wall pressure. A relation between cavitation induced material damage and corresponding collapse mechanisms is obtained from pressure-impact data at the wall. We analyze the resolution dependence of collapse and rebound and the observed maximum pressure distributions. The comparison of the results on six different grid resolutions shows that main collapse features are already captured on the coarsest resolution, while the peak pressures are strongly resolution dependent.
Cloud cavitation is related to an intrinsic instability where clouds are shed periodically. The shedding process is initiated either by the motion of a liquid re-entrant jet or a condensation shock. Cloud cavitation in nozzles interacts with the flow field in the nozzle, the mass flow and the spray break-up, and causes erosion damage. For nozzle geometries cloud shedding and the associated processes have not yet been studied in detail. In this paper, we investigate the process of cloud cavitation shedding, the re-entrant jet and condensation shocks in a scaled-up generic step nozzle with injection into gas using implicit Large-Eddy Simulations (LES). For modeling of the cavitating liquid we employ a barotropic equilibrium cavitation model, embedded in a homogeneous multi-component mixture model. Full compressibility of all components is taken into account to resolve the effects of collapsing vapor structures. We carry out simulations of two operating points exhibiting different cavitation regimes. The time-resolved, three-dimensional simulation results cover several shedding cycles and provide deeper insight into the flow field. Our results show that at lower cavitation numbers, shedding is initiated by condensation shocks, which has not yet been reported for nozzle flows with a constant cross-section. We analyze the cavitation dynamics and the shedding cycles of both operating points. Based on our observations we propose modifications to established schematics of the cloud shedding process. Additionally, we analyze the near-wall upstream flow in and underneath the vapor sheet and possible driving mechanism behind the formation of the re-entrant jet.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا