ترغب بنشر مسار تعليمي؟ اضغط هنا

In this work, we first discuss the possibility that dark energy models with negative energy density values in the past can alleviate the $H_0$ tension, as well as the discrepancy with the baryon acoustic oscillation (BAO) Lyman-$alpha$ data, both whi ch prevail within the $Lambda$CDM model. We then investigate whether two minimal extensions of the $Lambda$CDM model, together or separately, can successfully realize such a scenario: (i) the spatial curvature, which, in the case of spatially closed universe, mimics a negative density source and (ii) simple-graduated dark energy (gDE), which promotes the null inertial mass density of the usual vacuum energy to an arbitrary constant--if negative, the corresponding energy density decreases with redshift similar to the phantom models, but unlike them crosses below zero at a certain redshift. We find that, when the Planck data are not included in the observational analysis, the models with simple-gDE predict interesting and some significant deviations from the $Lambda$CDM model. In particular, a spatially closed universe along with a simple-gDE of positive inertial mass density, which work in contrast to each other, results in minor improvement to the $H_0$ tension. The joint dataset, including the Planck data, presents no evidence for a deviation from spatial flatness but almost the same evidence for a cosmological constant and the simple-gDE with an inertial mass density of order $mathcal{O}(10^{-12}),rm eV^4$. The latter case predicts almost no deviation from the $Lambda$CDM model up until today--so that it results in no improvement regarding the BAO Ly-$alpha$ data--except that it slightly aggravates the $H_0$ tension. We also study via dynamical analysis the history of the Universe in the models, as the simple-gDE results in futures different than the de Sitter future of the $Lambda$CDM model.
We introduce a generalization of the usual vacuum energy, called `deformed vacuum energy, which yields anisotropic pressure whilst preserving zero inertial mass density. It couples to the shear scalar in a unique way, such that they together emulate the canonical scalar field with an arbitrary potential. This opens up a new avenue by reconsidering cosmologies based on canonical scalar fields, along with a bonus that the kinetic term of the scalar field is replaced by an observable, the shear scalar. We further elaborate the aspects of this approach in the context of dark energy.
We present a detailed investigation of the Rastall gravity extension of the standard $Lambda$CDM model. We review the model for two simultaneous modifications of different nature in the Friedmann equation due to the Rastall gravity: the new contribut ions of the material (actual) sources (considered as effective source) and the altered evolution of the material sources. We discuss the role/behavior of these modifications with regard to some low redshift tensions, including the so-called $H_0$ tension, prevailing within the standard $Lambda$CDM. We constrain the model at the level of linear perturbations, and obtain the first constraints through a robust and accurate analysis using the latest full Planck CMB data, with and without including BAO data. We find that the Rastall parameter $epsilon$ (null for general relativity) is consistent with zero at 68% CL (with a tendency towards positive values, $-0.0001 < epsilon < 0.0007$ (CMB+BAO) at 68% CL), which in turn implies no significant statistical evidence for deviation from general relativity, and also a precision of $mathcal{O}(10^{-4})$ for the coefficient $-1/2$ of the term $g_{mu u}R$ in the Einstein field equations of general relativity (guaranteeing the local energy-momentum conservation). We explore the consequences led by the Rastall gravity on the cosmological parameters in the light of the observational analyses. It turns out that the effective source dynamically screens the usual vacuum energy at high redshifts, but this mechanism barely works due to the opposition by the altered evolution of CDM. Consequently, two simultaneous modifications of different nature in the Friedmann equation act against each other, and do not help to considerably relax the so-called low redshift tensions. Our results may offer a guide for the research community that studies the Rastall gravity in various aspects of gravitation and cosmology.
We present an explicit detailed theoretical and observational investigation of an anisotropic massive Brans-Dicke (BD) gravity extension of the standard $Lambda$CDM model, wherein the extension is characterized by two additional degrees of freedom; t he BD parameter, $omega$, and the present day density parameter corresponding to the shear scalar, $Omega_{sigma^2,0}$. The BD parameter, determining the deviation from general relativity (GR), by alone characterizes both the dynamics of the effective dark energy (DE) and the redshift dependence of the shear scalar. These two affect each other depending on $omega$, namely, the shear scalar contributes to the dynamics of the effective DE, and its anisotropic stress --which does not exist in scalar field models of DE within GR-- controls the dynamics of the shear scalar deviating from the usual $propto(1+z)^6$ form in GR. We mainly confine the current work to non-negative $omega$ values as it is the right sign --theoretically and observationally-- for investigating the model as a correction to the $Lambda$CDM. By considering the current cosmological observations, we find that $omegagtrsim 250$, $Omega_{sigma^2,0}lesssim 10^{-23}$ and the contribution of the anisotropy of the effective DE to this value is insignificant. We conclude that the simplest anisotropic massive BD gravity extension of the standard $Lambda$CDM model exhibits no significant deviations from it all the way to the Big Bang Nucleosynthesis. We also point out the interesting features of the model in the case of negative $omega$ values; for instance, the constraints on $Omega_{sigma^2,0}$ could be relaxed considerably, the values of $omegasim-1$ (relevant to string theories) predict dramatically different dynamics for the expansion anisotropy.
In this paper, we introduce a scale-independent energy-momentum squared gravity (EMSG) that allows different gravitational couplings for different types of sources, which may lead to scenarios with many interesting applications/implications in cosmol ogy. In the present study, to begin with, we study a modification of the $Lambda$ cold dark matter ($Lambda$CDM) model, where photons and baryons couple to the spacetime as in general relativity, while the cold dark matter and relativistic relics (neutrinos and any other relativistic relics) couple to the spacetime in accordance with EMSG. This scenario induces pseudo nonminimal interactions on these components, leading to modification at both the background and perturbative levels. A consequence of this scenario is that the dimensionless free parameter of the theory may induce direct changes on the effective number of the relativistic species, without the need to introduce new extra species. In order to quantify the observational consequences of the cosmological scenario, we use the cosmic microwave background Planck data (temperature, polarization, and lensing power spectrum) and baryonic acoustic oscillations data. We find that the free model parameter is too small to induce statistically significant corrections on the $Lambda$CDM model due to EMSG. We deduce that the model presented here is quite rich with promising cosmological applications/implications that deserve further investigations.
We propose a modified theory of gravitation constructed by the addition of the term $f(T_{mu u}T^{mu u})$ to the Einstein-Hilbert action, and elaborate a particular case $f(T_{mu u}T^{mu u})=alpha(T_{mu u}T^{mu u})^{eta}$, where $alpha$ and $eta$ are real constants, dubbed as energy-momentum powered gravity (EMPG). We search for viable cosmologies arising from EMPG especially in the context of the late-time accelerated expansion of the Universe. We investigate the ranges of the EMPG parameters $(alpha,eta)$ on theoretical as well as observational grounds leading to the late-time acceleration of the Universe with pressureless matter only, while keeping the successes of standard general relativity at early times. We find that $eta=0$ corresponds to the $Lambda$CDM model, whereas $eta eq 0$ leads to a $w$CDM-type model. However, the underlying physics of the EMPG model is entirely different in the sense that the energy in the EMPG Universe is sourced by pressureless matter only. Moreover, the energy of the pressureless matter is not conserved, namely, in general it does not dilute as $rhopropto a^{-3}$ with the expansion of the Universe. Finally, we constrain the parameters of an EMPG-based cosmology with a recent compilation of 28 Hubble parameter measurements, and find that this model describes an evolution of the Universe similar to that in the $Lambda$CDM model. We briefly discuss that EMPG can be unified with Starobinsky gravity to describe the complete history of the Universe including the inflationary era.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا