ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the discovery of a new dwarf galaxy, Hydra II, found serendipitously within the data from the ongoing Survey of the MAgellanic Stellar History (SMASH) conducted with the Dark Energy Camera on the Blanco 4m Telescope. The new satellite is c ompact (r_h = 68 +/- 11 pc) and faint (M_V = -4.8 +/- 0.3), but well within the realm of dwarf galaxies. The stellar distribution of HydraII in the color-magnitude diagram is well-described by a metal-poor ([Fe/H] = -2.2) and old (13 Gyr) isochrone and shows a distinct blue horizontal branch, some possible red clump stars, and faint stars that are suggestive of blue stragglers. At a heliocentric distance of 134 +/- 10 kpc, Hydra II is located in a region of the Galactic halo that models have suggested may host material from the leading arm of the Magellanic Stream. A comparison with N-body simulations hints that the new dwarf galaxy could be or could have been a satellite of the Magellanic Clouds.
We present the discovery of a faint Milky Way satellite, Laevens 2/Triangulum II, found in the Panoramic Survey Telescope And Rapid Response System (Pan-STARRS 1) 3 pi imaging data and confirmed with follow-up wide-field photometry from the Large Bin ocular Cameras. The stellar system, with an absolute magnitude of M_V=-1.8 +/-0.5, a heliocentric distance of 30 +2/-2 kpc, and a half-mass radius of 34 +9/-8 pc, shows remarkable similarity to faint, nearby, small satellites such as Willman 1, Segue 1, Segue 2, and Bootes II. The discovery of Laevens 2/Triangulum II further populates the region of parameter space for which the boundary between dwarf galaxies and globular clusters becomes tenuous. Follow-up spectroscopy will ultimately determine the nature of this new satellite, whose spatial location hints at a possible connection with the complex Triangulum-Andromeda stellar structures.
We reveal the highly structured nature of the Milky Way stellar halo within the footprint of the PAndAS photometric survey from blue main sequence and main sequence turn-off stars. We map no fewer than five stellar structures within a heliocentric ra nge of ~5 to 30 kpc. Some of these are known (the Monoceros Ring, the Pisces/Triangulum globular cluster stream), but we also uncover three well-defined stellar structures that could be, at least partly, responsible for the so-called Triangulum/Andromeda and Triangulum/Andromeda 2 features. In particular, we trace a new faint stellar stream located at a heliocentric distance of ~17 kpc. With a surface brightness of Sigma_V ~ 32-32.5 mag/arcsec^2, it follows an orbit that is almost parallel to the Galactic plane north of M31 and has so far eluded surveys of the Milky Way halo as these tend to steer away from regions dominated by the Galactic disk. Investigating our follow-up spectroscopic observations of PAndAS, we serendipitously uncover a radial velocity signature from stars that have colors and magnitudes compatible with the stream. From the velocity of eight likely member stars, we show that this stellar structure is dynamically cold, with an unresolved velocity dispersion that is lower than 7.1 km/s at the 90-percent confidence level. Along with the width of the stream (300-650 pc), its dynamics points to a dwarf-galaxy-accretion origin. The numerous stellar structures we can map in the Milky Way stellar halo between 5 and 30 kpc and their varying morphology is a testament to the complex nature of the stellar halo at these intermediate distances.
We present the discovery of a new dwarf galaxy, Perseus I/Andromeda XXXIII, found in the vicinity of Andromeda (M31) in stacked imaging data from the Pan-STARRS1 3{pi} survey. Located 27.9{deg} away from M31, Perseus I has a heliocentric distance of 785 +/- 65 kpc, compatible with it being a satellite of M31 at 374 +14/-10 kpc from its host. The properties of Perseus I are typical for a reasonably bright dwarf galaxy (M_V = -10.3 +/- 0.7), with an exponential half-light radius of r_h = 1.7 +/- 0.4 arcminutes or r_h = 400 +105/-85 pc at this distance, and a moderate ellipticity (epsilon = 0.43 +0.15/-0.17). The late discovery of Perseus I is due to its fairly low surface brightness (mu_0=25.7 +1.0/-0.9 mag/arcsec^2), and to the previous lack of deep, high quality photometric data in this region. If confirmed to be a companion of M31, the location of Perseus I, far east from its host, could place interesting constraints on the bulk motion of the satellite system of M31.
We provide a comprehensive description and offer an explanation for the sizes of the faintest known galaxies in the universe, the dwarf spheroidal (dSph) satellites of the Milky Way and Andromeda. After compiling a consistent data set of half-light r adii (r_{1/2}) and luminosities, we describe the size-luminosity relation of dSphs by a log-normal distribution in r_{1/2} with a mean size that varies as a function of luminosity. Accounting for modest number statistics, measurement uncertainties and surface brightness limitations, we find that the size-luminosity relations of the Milky Way and Andromeda dSph populations are statistically indistinguishable, and also very similar: their mean sizes at a given stellar luminosity differ by no more than 30%. In addition, we find that the mean size, slope and scatter of this log-normal size description of Local Group dSphs matches onto the relation of more massive low-concentration galaxies. This suggests that the stellar sizes of dSphs are ultimately related to their overall initial baryonic angular momentum. To test this hypothesis we perform a series of high resolution N-body simulations that we couple with a semi-analytic model of galaxy formation. These predict the same mean size and slope as observed in dSph satellites. At the same time, these models predict that the size-luminosity distributions for satellite galaxies around similar host-halos must be similar providing a natural explanation as to why the size distributions of Milky Way and Andromeda satellites are similar. Although strong rotation is currently not observed in dSphs, this may well be consistent with our angular-momentum-based explanation for their sizes if the disks of these galaxies have become sufficiently stirred through tidal interaction.
We have obtained deep photometry in two 1x1 degree fields covering the close pair of dwarf spheroidal galaxies (dSph) Leo IV and Leo V and part of the area in between. We find that both systems are significantly larger than indicated by previous meas urements based on shallower data and also significantly elongated. With half-light radii of r_h=4.6 +- 0.8 (206 +- 36 pc) and r_h=2.6 +- 0.6 (133 +- 31 pc), respectively, they are now well within the physical size bracket of typical Milky Way dSph satellites. Their ellipticities of epsilon ~0.5 are shared by many faint (M_V>-8) Milky Way dSphs. The large spatial extent of our survey allows us to search for extra-tidal features with unprecedented sensitivity. The spatial distribution of candidate red giant branch and horizontal branch stars is found to be non-uniform at the ~3 sigma level. This substructure is aligned along the direction connecting the two systems, indicative of a possible `bridge of extra-tidal material. Fitting the stellar distribution with a linear Gaussian model yields a significance of 4 sigma for this overdensity, a most likely FWHM of ~16 arcmin and a central surface brightness of ~32 mag arcsec^{-2}. We investigate different scenarios to explain the close proximity of Leo IV and Leo V and the possible tidal bridge between them. Orbit calculations demonstrate that they are unlikely to be remnants of a single disrupted progenitor, while a comparison with cosmological simulations shows that a chance collision between unrelated subhalos is negligibly small. Leo IV and Leo V could, however, be a bound `tumbling pair if their combined mass exceeds 8 +- 4 x 10^9 M_sun. The scenario of an internally interacting pair appears to be the most viable explanation for this close celestial companionship. (abridged)
We derive the structural parameters of the recently discovered very low luminosity Milky Way satellites through a Maximum Likelihood algorithm applied to SDSS data. For each satellite, even when only a few tens of stars are available down to the SDSS flux limit, the algorithm yields robust estimates and errors for the centroid, position angle, ellipticity, exponential half-light radius and number of member stars. This latter parameter is then used in conjunction with stellar population models of the satellites to derive their absolute magnitudes and stellar masses, accounting for `CMD shot-noise. We find that faint systems are somewhat more elliptical than initially found and ascribe that to the previous use of smoothed maps which can be dominated by the smoothing kernel. As a result, the faintest half of the Milky Way dwarf galaxies (M_V>-7.5) is significantly (4-sigma) flatter (e=0.47+/-0.03) than its brightest half (M_V<-7.5, e=0.32+/-0.02). From our best models, we also investigate whether the seemingly distorted shape of the satellites, often taken to be a sign of tidal distortion, can be quantified. We find that, except for tentative evidence of distortion in CVnI and UMaII, these can be completely accounted for by Poisson scatter in the sparsely sampled systems. We consider three scenarios that could explain the rather elongated shape of faint satellites: rotation supported systems, stars following the shape of more triaxial dark matter subhalos, or elongation due to tidal interaction with the Milky Way. Although none of these is entirely satisfactory, the last one appears the least problematic, but warrants much deeper observations to track evidence of such tidal interaction.
We present the first deep color-magnitude diagram of the Canes Venatici I (CVnI) dwarf galaxy from observations with the wide field Large Binocular Camera on the Large Binocular Telescope. Reaching down to the main-sequence turnoff of the oldest star s, it reveals a dichotomy in the stellar populations of CVnI: it harbors an old (> 10 Gyr), metal-poor ([Fe/H] ~ -2.0) and spatially extended population along with a much younger (~ 1.4-2.0 Gyr), 0.5 dex more metal-rich, and spatially more concentrated population. These young stars are also offset by 64_{-20}^{+40} pc to the East of the galaxy center. The data suggest that this young population, which represent ~ 3-5 % of the stellar mass of the galaxy within its half-light radius, should be identified with the kinematically cold stellar component found by Ibata et al. (2006). CVnI therefore follows the behavior of the other remote MW dwarf spheroidals which all contain intermediate age and/or young populations: a complex star formation history is possible in extremely low-mass galaxies.
We present a deep, wide-field photometric survey of the newly-discovered Hercules dwarf spheroidal galaxy, based on data from the Large Binocular Telescope. Images in B, V and r were obtained with the Large Binocular Camera covering a 23 times 23 fie ld of view to a magnitude of ~25.5 (5 sigma). This permitted the construction of colour-magnitude diagrams that reach approximately 1.5 magnitudes below the Hercules main sequence turnoff. Three-filter photometry allowed us to preferentially select probable Hercules member stars, and examine the structure of this system at a previously unattained level. We find that the Hercules dwarf is highly elongated (3:1), considerably more so than any other dSph satellite of the Milky Way except the disrupting Sagittarius dwarf. While we cannot rule out that the unusual structure is intrinsic to Hercules as an equilibrium system, our results suggest tidal disruption as a likely cause of this highly elliptical structure. Given the relatively large Galactocentric distance of this system (132 +/- 12 kpc), signs of tidal disruption would require the Hercules dwarf to be on a highly eccentric orbit around the Milky Way.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا