ترغب بنشر مسار تعليمي؟ اضغط هنا

Perseus I: A distant satellite dwarf galaxy of Andromeda

127   0   0.0 ( 0 )
 نشر من قبل Nicolas Martin
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the discovery of a new dwarf galaxy, Perseus I/Andromeda XXXIII, found in the vicinity of Andromeda (M31) in stacked imaging data from the Pan-STARRS1 3{pi} survey. Located 27.9{deg} away from M31, Perseus I has a heliocentric distance of 785 +/- 65 kpc, compatible with it being a satellite of M31 at 374 +14/-10 kpc from its host. The properties of Perseus I are typical for a reasonably bright dwarf galaxy (M_V = -10.3 +/- 0.7), with an exponential half-light radius of r_h = 1.7 +/- 0.4 arcminutes or r_h = 400 +105/-85 pc at this distance, and a moderate ellipticity (epsilon = 0.43 +0.15/-0.17). The late discovery of Perseus I is due to its fairly low surface brightness (mu_0=25.7 +1.0/-0.9 mag/arcsec^2), and to the previous lack of deep, high quality photometric data in this region. If confirmed to be a companion of M31, the location of Perseus I, far east from its host, could place interesting constraints on the bulk motion of the satellite system of M31.



قيم البحث

اقرأ أيضاً

48 - D. Harbeck 2005
We present WIYN observations of the recently discovered And IX dwarf spheroidal (dSph) satellite galaxy of M 31. Our data, obtained at a natural seeing of 0.5 and just reaching the horizontal branch level, confirm And IX as a dSph galaxy with a dista nce similar to M 31. A survey for carbon stars shows no evidence for an intermediate-age (1--10 Gyr) stellar population in And IX. From the red giant branch we estimate a metallicity of roughly -2 dex. Combined with the tip of the red giant branch luminosity, this results in a distance of 735 kpc, placing And IX approximately 45 kpc from M 31. This faint dSph follows the relations between luminosity and metallicity, and luminosity and surface brightness defined by other Local Group dSph galaxies. The core and tidal radii are found to be 1.35 and 5.9, respectively. We conclude that And IX -- despite its low luminosity -- might be an ordinary Local Group dSph and discuss implications for its formation from a once more massive, but stripped progenitor or from an intrinsically low-mass seed.
Dwarf satellite galaxies are thought to be the remnants of the population of primordial structures that coalesced to form giant galaxies like the Milky Way. An early analysis noted that dwarf galaxies may not be isotropically distributed around our G alaxy, as several are correlated with streams of HI emission, and possibly form co-planar groups. These suspicions are supported by recent analyses, and it has been claimed that the apparently planar distribution of satellites is not predicted within standard cosmology, and cannot simply represent a memory of past coherent accretion. However, other studies dispute this conclusion. Here we report the existence (99.998% significance) of a planar sub-group of satellites in the Andromeda galaxy, comprising approximately 50% of the population. The structure is vast: at least 400 kpc in diameter, but also extremely thin, with a perpendicular scatter <14.1 kpc (99% confidence). Radial velocity measurements reveal that the satellites in this structure have the same sense of rotation about their host. This finding shows conclusively that substantial numbers of dwarf satellite galaxies share the same dynamical orbital properties and direction of angular momentum, a new insight for our understanding of the origin of these most dark matter dominated of galaxies. Intriguingly, the plane we identify is approximately aligned with the pole of the Milky Ways disk and is co-planar with the Milky Way to Andromeda position vector. The existence of such extensive coherent kinematic structures within the halos of massive galaxies is a fact that must be explained within the framework of galaxy formation and cosmology.
In the standard structure formation scenario based on the cold dark matter paradigm, galactic halos are predicted to contain a large population of dark matter subhalos. While the most massive members of the subhalo population can appear as luminous s atellites and be detected in optical surveys, establishing the existence of the low mass and mostly dark subhalos has proven to be a daunting task. Galaxy-scale strong gravitational lenses have been successfully used to study mass substructures lying close to lensed images of bright background sources. However, in typical galaxy-scale lenses, the strong lensing region only covers a small projected area of the lenss dark matter halo, implying that the vast majority of subhalos cannot be directly detected in lensing observations. In this paper, we point out that this large population of dark satellites can collectively affect gravitational lensing observables, hence possibly allowing their statistical detection. Focusing on the region of the galactic halo outside the strong lensing area, we compute from first principles the statistical properties of perturbations to the gravitational time delay and position of lensed images in the presence of a mass substructure population. We find that in the standard cosmological scenario, the statistics of these lensing observables are well approximated by Gaussian distributions. The formalism developed as part of this calculation is very general and can be applied to any halo geometry and choice of subhalo mass function. Our results significantly reduce the computational cost of including a large substructure population in lens models and enable the use of Bayesian inference techniques to detect and characterize the distributed satellite population of distant lens galaxies.
Andromeda XXI (And XXI) has been proposed as a dwarf spheroidal galaxy with a central dark matter density that is lower than expected in the Standard $Lambda$ Cold Dark Matter ($Lambda$CDM) cosmology. In this work, we present dynamical observations f or 77 member stars in this system, more than doubling previous studies to determine whether this galaxy is truly a low density outlier. We measure a systemic velocity of $v_r=-363.4pm1.0,{rm kms}^{-1}$ and a velocity dispersion of $sigma_v=6.1^{+1.0}_{-0.9},{rm kms}^{-1}$, consistent with previous work and within $1sigma$ of predictions made within the modified Newtonian dynamics framework. We also measure the metallicity of our member stars from their spectra, finding a mean value of ${rm [Fe/H]}=-1.7pm0.1$~dex. We model the dark matter density profile of And~XXI using an improved version of GravSphere, finding a central density of $rho_{rm DM}({rm 150 pc})=2.7_{-1.7}^{+2.7} times 10^7 ,{rm M_odot,kpc^{-3}}$ at 68% confidence, and a density at two half light radii of $rho_{rm DM}({rm 1.75 kpc})=0.9_{-0.2}^{+0.3} times 10^5 ,{rm M_odot,kpc^{-3}}$ at 68% confidence. These are both a factor ${sim}3-5$ lower than the densities expected from abundance matching in $Lambda$CDM. We show that this cannot be explained by `dark matter heating since And~XXI had too little star formation to significantly lower its inner dark matter density, while dark matter heating only acts on the profile inside the half light radius. However, And~XXIs low density can be accommodated within $Lambda$CDM if it experienced extreme tidal stripping (losing $>95%$ of its mass), or if it inhabits a low concentration halo on a plunging orbit that experienced repeated tidal shocks.
We have obtained Herschel images at five wavelengths from 100 to 500 micron of a ~5.5x2.5 degree area centred on the local galaxy M31 (Andromeda), our nearest neighbour spiral galaxy, as part of the Herschel guaranteed time project HELGA. The main go als of HELGA are to study the characteristics of the extended dust emission, focusing on larger scales than studied in previous observations of Andromeda at an increased spatial resolution, and the obscured star formation. In this paper we present data reduction and Herschel maps, and provide a description of the far-infrared morphology, comparing it with features seen at other wavelengths. We use high--resolution maps of the atomic hydrogen, fully covering our fields, to identify dust emission features that can be associated to M31 with confidence, distinguishing them from emission coming from the foreground Galactic cirrus. Thanks to the very large extension of our maps we detect, for the first time at far-infrared wavelengths, three arc-like structures extending out to ~21, ~26 and ~31 kpc respectively, in the south-western part of M31. The presence of these features, hosting ~2.2e6 Msol of dust, is safely confirmed by their detection in HI maps. Overall, we estimate a total dust mass of ~5.8e7 Msol, about 78% of which is contained in the two main ring-like structures at 10 and 15 kpc, at an average temperature of 16.5 K. We find that the gas-to-dust ratio declines exponentially as a function of the galacto-centric distance, in agreement with the known metallicity gradient, with values ranging from 66 in the nucleus to ~275 in the outermost region. [Abridged]
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا