ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider a simple abelian vector dark matter (DM) model, where {it only} the DM $(widetilde{X}_mu)$ couples non-minimally to the scalar curvature $(widetilde{R})$ of the background spacetime via an operator of the form $sim widetilde{X}_mu,widetil de{X}^mu,widetilde{R}$. By considering the standard freeze-out scenario, we show, it is possible to probe such a non-minimally coupled DM in direct detection experiments for a coupling strength $xisimmathcal{O}left(10^{30}right)$ and DM mass $m_Xlesssim 55$ TeV, satisfying Planck observed relic abundance and perturbative unitarity. We also discuss DM production via freeze-in, governed by the non-minimal coupling, that requires $xilesssim 10^5$ to produce the observed DM abundance over a large range of DM mass depending on the choice of the reheating temperature. We further show, even in the absence of the non-minimal coupling, it is possible to produce the whole observed DM abundance via 2-to-2 scattering of the bath particles mediated by massless gravitons.
We study axion dark matter production from a misalignment mechanism in scenarios featuring a general nonstandard cosmology. Before the onset of Big Bang nucleosynthesis, the energy density of the universe is dominated by a particle field $phi$ descri bed by a general equation of state $omega$. The ensuing enhancement of the Hubble expansion rate decreases the temperature at which axions start to oscillate, opening this way the possibility for axions heavier than in the standard window. This is the case for kination, or in general for scenarios with $omega > 1/3$. However, if $omega < 1/3$, as in the case of an early matter domination, the decay of $phi$ injects additional entropy relative to the case of the standard model, diluting this way the preexisting axion abundance, and rendering lighter axions viable. For a misalignment angle $0.5 < theta_i < pi/sqrt{3}$, the usual axion window becomes expanded to $4 times 10^{-9}$ eV $lesssim m_a lesssim 2 times 10^{-5}$ eV for the case of an early matter domination, or to $2 times 10^{-6}$ eV $lesssim m_a lesssim 10^{-2}$ eV for the case of kination. Interestingly, the coupling axion-photon in such a wider range can be probed with next generation experiments such as ABRACADABRA, KLASH, ADMX, MADMAX, and ORGAN. Axion dark matter searches may therefore provide a unique tool to probe the history of the universe before Big Bang nucleosynthesis.
52 - Nicolas Bernal , Yong Xu 2021
We present a minimal UV complete framework to embed inflation and dark matter by extending the standard model with a singlet real scalar field (the inflaton) and a singlet fermonic field acting as dark matter. The inflaton features the most general r enormalizable polynomial up to quartic order, which is flat due to the existence of a perturbed inflection-point, comfortably fitting CMB measurements. We also analyze (p)reheating by considering the Higgs production via inflaton decay. In the early universe, dark matter can be generated by the mediation of gravitons or inflatons. However, the production via the direct decay of the inflatons dominates, making viable a large range of dark matter masses, from $mathcal{O}(10^{-5})$ GeV to $mathcal{O}(10^{11})$ GeV.
We study the impact of thermalization and number-changing processes in the dark sector on the yield of gravitationally produced dark matter (DM). We take into account the DM production through the $s$-channel exchange of a massless graviton both from the scattering of inflatons during the reheating era, and from the Standard Model bath via the UV freeze-in mechanism. By considering the DM to be a scalar, a fermion, and a vector boson we show, in a model-independent way, that DM self-interaction gives rise to a larger viable parameter space by allowing lower reheating temperature to be compatible with Planck observed relic abundance. As an example, we also discuss our findings in the ontext of the $mathbb{Z}_2$-symmetric scalar singlet DM model.
In the Starobinsky model of inflation, the observed dark matter abundance can be produced from the direct decay of the inflaton field only in a very narrow spectrum of close-to-conformal scalar fields and spinors of mass $sim 10^7$ GeV. This spectrum can be, however, significantly broadened in the presence of effective non-renormalizable interactions between the dark and the visible sectors. In particular, we show that UV freeze-in can efficiently generate the right dark matter abundance for a large range of masses spanning from the keV to the PeV scale and arbitrary spin, without significantly altering the heating dynamics. We also consider the contribution of effective interactions to the inflaton decay into dark matter.
The existence of dark matter particles that carry phenomenologically relevant self-interaction cross sections mediated by light dark sector states is considered to be severely constrained through a combination of experimental and observational data. The conclusion is based on the assumption of specific dark matter production mechanisms such as thermal freeze-out together with an extrapolation of a standard cosmological history beyond the epoch of primordial nucleosynthesis. In this work, we drop these assumptions and examine the scenario from the perspective of the current firm knowledge we have: results from direct and indirect dark matter searches and cosmological and astrophysical observations, without additional assumptions on dark matter genesis or the thermal state of the very early universe. We show that even in the minimal set-up, where dark matter particles self-interact via a kinetically mixed vector mediator, a significant amount of parameter space remains allowed. Interestingly, however, these parameter regions imply a meta-stable, light mediator, which in turn calls for modified search strategies.
Currently, the standard cosmological model faces some tensions and discrepancies between observations at early and late cosmological time. One of them concerns the well-known $H_0$-tension problem, i.e., a $sim4.4sigma$-difference between the early-t ime estimate and late-time measurements of the Hubble constant, $H_0$. Another puzzling question rests in the cosmological lithium abundance, where again local measurements differ from the one predicted by Big Bang Nucleosynthesis (BBN). In this work, we show that a mechanism of light dark matter production might hold the answer for these questions. If dark matter particles are sufficiently light and a fraction of them was produced non-thermally in association with photons, this mechanism has precisely what is needed to destroy Lithium without spoiling other BBN predictions. Besides, it produces enough radiation that leads to a larger $H_0$ value, reconciling early and late-time measurements of the Hubble expansion rate without leaving sizable spectral distortions in the Cosmic Microwave Background spectrum.
A notable feature of UV freeze-in is that the relic density is strongly dependent on the highest temperatures of the thermal bath, and a common assumption is that the relevant highest temperature should be the reheating temperature after inflation $T _text{RH}$. However, the temperature of the thermal bath can be significantly higher in certain scenarios, reaching a value denoted T max , a fact which is only apparent away from the instantaneous decay approximation. Interestingly, it has been shown that if the operators are of sufficiently high mass dimension then the dark matter abundance can be enhanced by a boost factor depending on ($T_text{max}/T_text{RH}$) relative to naive estimates assuming instantaneous reheating. We highlight here that in non-standard cosmological histories the critical mass dimension of the operator above at which the instantaneous decay approximation breaks down, and the exponent of the boost factor, depend on the equation of state $omega$ prior to reheating. We highlight four examples in which the dark matter abundance receives a significant enhancement in the context of gravitino dark matter, the moduli portal, the Higgs portal, and the spin-2 portal (as might arise in bimetric gravity models). We comment on the transition from kination domination to radiation domination as a motivated example of non-standard cosmologies.
Once dark matter has been discovered and its particle physics properties have been determined, a crucial question rises concerning how it was produced in the early Universe. If its thermally averaged annihilation cross section is in the ballpark of f ew$times 10^{-26}$ cm$^3$/s, the WIMP mechanism in the standard cosmological scenario (i.e. radiation dominated Universe) will be highly favored. If this is not the case one can either consider an alternative production mechanism, or a non-standard cosmology. Here we study the dark matter production in scenarios with a non-standard expansion history. Additionally, we reconstruct the possible non-standard cosmologies that could make the WIMP mechanism viable.
If cosmic inflation was driven by an electrically neutral scalar field stable on cosmological time scales, the field necessarily constitutes all or part of dark matter (DM). We study this possibility in a scenario where the inflaton field $s$ resides in a hidden sector, which is coupled to the Standard Model sector through the Higgs portal $lambda_{hs} s^2mathcal{H}^daggermathcal{H}$ and non-minimally to gravity via $xi_s s^2 R$. We study scenarios where the field $s$ first drives inflation, then reheats the Universe, and later constitutes all DM. We consider two benchmark scenarios where the DM abundance is generated either by production during reheating or via non-thermal freeze-in. In both cases, we take into account all production channels relevant for DM in the mass range from keV to PeV scale. On the inflationary side, we compare the dynamics and the relevant observables in two different but well-motivated theories of gravity (metric and Palatini), discuss multifield effects in case both fields ($s$ and $h$) were dynamical during inflation, and take into account the non-perturbative nature of particle production during reheating. We find that, depending on the initial conditions for inflation, couplings and the DM mass, the scenario works well especially for large DM masses, $10^2$ GeV$lesssim m_{s}lesssim 10^6$ GeV, although there are also small observationally allowed windows at the keV and MeV scales. We discuss how the model can be tested through astrophysical observations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا