ترغب بنشر مسار تعليمي؟ اضغط هنا

Fermi-LAT >30 MeV observations have increased the number of detected solar flares by almost a factor of 10 with respect to previous space observations. These sample both the impulsive and long duration phases of GOES M and X class flares. Of particul ar interest is the recent detections of three solar flares whose position behind the limb was confirmed by the STEREO-B spacecraft. While gamma-ray emission up to tens of MeV resulting from proton interactions has been detected before from occulted solar flares, the significance of these particular events lies in the fact that these are the first detections of >100 MeV gamma-ray emission from footpoint-occulted flares. We will present the Fermi-LAT, RHESSI and STEREO observations of these flares and discuss the various emission scenarios for these sources and implications for the particle acceleration mechanisms.
We report the first detection of >100 MeV gamma rays associated with a behind-the-limb solar flare, which presents a unique opportunity to probe the underlying physics of high-energy flare emission and particle acceleration. On 2013 October 11 a GOES M1.5 class solar flare occurred ~ 9.9 degrees behind the solar limb as observed by STEREO-B. RHESSI observed hard X-ray emission above the limb, most likely from the flare loop-top, as the footpoints were occulted. Surprisingly, the Fermi Large Area Telescope (LAT) detected >100 MeV gamma-rays for ~30 minutes with energies up to GeV. The LAT emission centroid is consistent with the RHESSI hard X-ray source, but its uncertainty does not constrain the source to be located there. The gamma-ray spectra can be adequately described by bremsstrahlung radiation from relativistic electrons having a relatively hard power-law spectrum with a high-energy exponential cutoff, or by the decay of pions produced by accelerated protons and ions with an isotropic pitch-angle distribution and a power-law spectrum with a number index of ~3.8. We show that high optical depths rule out the gamma rays originating from the flare site and a high-corona trap model requires very unusual conditions, so a scenario in which some of the particles accelerated by the CME shock travel to the visible side of the Sun to produce the observed gamma rays may be at work.
Observations of Gamma-Ray Bursts with the Fermi Large Area Telescope have prompted theoretical advances and posed big challenges in the understanding of such extreme sources, despite the fact that GRB emission above 100 MeV is a fairly rare event. Th e first Fermi/LAT GRB catalog, published a year ago, presented 28 detections out of ~300 bursts detected by the Fermi Gamma-Ray Burst Monitor (GBM) within the LAT field of view. Building on the results from that work and on recent development in the understanding of the systematic errors on GBM localizations, we developed a new detection algorithm which increased the number of detections by 40 %. Even more recently the development of the new event analysis for the LAT (Pass 8) has increased the number of detections within the first 3 years of the mission to 45, up 50 % with respect to the published catalog. The second LAT GRB catalog, in preparation, will cover more than 6 years of the mission and will break the barrier of 100 detected GRBs, a more than 20-fold improvement with respect to observations before the Fermi era in the same energy range. We will review the main features of the new algorithm, as well as preliminary results from this investigation.
134 - Nicola Omodei 2009
The Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope observatory is a pair conversion telescope sensitive to gamma-rays over more than four energy decades, between 20 MeV and more than 300 GeV. Acting in synergy with the Gamma-ray Bu rst Monitor (GBM) - the other instrument onboard the mission - the LAT features unprecedented sensitivity for the study of gamma-ray bursts (GRBs) in terms of spectral coverage, effective area, and instrumental dead time. We will review the main results from Fermi-LAT observation of GRB, presenting the main properties of GRBs at GeV energies.
The prompt emission from gamma-ray bursts (GRBs) still requires a physical explanation. Studies of time-resolved GRB spectra, observed in the keV-MeV range, show that a hybrid model consisting of two components, a photospheric and a non-thermal compo nent, in many cases fits bright, single-pulsed bursts as well as, and in some instances even better than, the Band function. With an energy coverage from 8 keV up to 300 GeV, GLAST will give us an unprecedented opportunity to further investigate the nature of the prompt emission. In particular, it will give us the possibility to determine whether a photospheric component is the determining feature of the spectrum or not. Here we present a short study of the ability of GLAST to detect such a photospheric component in the sub-MeV range for typical bursts, using simulation tools developed within the GLAST science collaboration.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا