ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulation of prompt emission from GRBs with a photospheric component and its detectability by GLAST

87   0   0.0 ( 0 )
 نشر من قبل Milan Battelino
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The prompt emission from gamma-ray bursts (GRBs) still requires a physical explanation. Studies of time-resolved GRB spectra, observed in the keV-MeV range, show that a hybrid model consisting of two components, a photospheric and a non-thermal component, in many cases fits bright, single-pulsed bursts as well as, and in some instances even better than, the Band function. With an energy coverage from 8 keV up to 300 GeV, GLAST will give us an unprecedented opportunity to further investigate the nature of the prompt emission. In particular, it will give us the possibility to determine whether a photospheric component is the determining feature of the spectrum or not. Here we present a short study of the ability of GLAST to detect such a photospheric component in the sub-MeV range for typical bursts, using simulation tools developed within the GLAST science collaboration.



قيم البحث

اقرأ أيضاً

In order to better understand the physical origin of short duration gamma-ray bursts (GRBs), we perform time-resolved spectral analysis on a sample of 70 pulses in 68 short GRBs with burst duration $T_{90}lesssim2$ s detected by the textit{Fermi}/GBM . We apply a Bayesian analysis to all spectra that have statistical significance $Sge15$ within each pulse and apply a cut-off power law (CPL) model. We then select in each pulse the timebin that has the maximal value of the low energy spectral index, %$alpha_{rm max}$, for further analysis. Under the assumption that the main emission mechanism is the same throughout each pulse, such an analysis is indicative of pulse emission. We find that $sim$1/3 of short GRBs are consistent with a pure, non-dissipative photospheric model, at least, around the peak of the pulse. This fraction is larger compare to the corresponding one (1/4) obtained for long GRBs. For these bursts, we find (i) a bi-modal distribution in the values of the Lorentz factors and the hardness ratios; (ii) an anti-correlation between $T_{90}$ and the peak energy, $E_{rm pk}$: $T_{90} propto E_{rm pk}^{-0.50pm0.19}$. This correlation disappears when we consider the entire sample. Our results thus imply that the short GRB population may in fact be composed of two separate populations: one being a continuation of the long GRB population to shorter durations, and the other one being distinctly separate with different physical properties. Furthermore, thermal emission is initially ubiquitous, but is accompanied at longer times by additional radiation (likely synchrotron).
81 - K.-I. Nishikawa 2008
Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks e.g. gamma-ray bursts (GRBs) active galactic nuclei (AGNs) and microquasars commonly exhibit power-law emission spectra. Recent PIC simulations of relati vistic electron-ion (or electron-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In collisionless relativistic shocks particle (electron, positron and ion) acceleration is due to plasma waves and their associated instabilities (e.g. the Weibel (filamentation) instability) created in the shock region. The simulations show that the Weibel instability is responsible for generating and amplifying highly non-uniform small-scale magnetic fields. These fields contribute to the electrons transverse deflection behind the jet head. The resulting ``jitter radiation from deflected electrons has different properties compared to synchrotron radiation which assumes a uniform magnetic field. Jitter radiation may be important for understanding the complex time evolution and/or spectra in gamma-ray bursts, relativistic jets in general and supernova remnants.
We report on observations of correlated behavior between the prompt gamma-ray and optical emission from GRB 080319B, which (i) strongly suggest that they occurred within the same astrophysical source region and (ii) indicate that their respective rad iation mechanisms were most likely dynamically coupled. Our preliminary results, based upon a new cross-correlation function (CCF) methodology for determining the time-resolved spectral lag, are summarized as follows. First, the evolution in the arrival offset of prompt gamma-ray photon counts between Swift-BAT 15-25 keV and 50-100 keV energy bands (intrinsic gamma-ray spectral lag) appears to be anti-correlated with the arrival offset between prompt 15-350 keV gamma-rays and the optical emission observed by TORTORA (extrinsic optical/gamma-ray spectral lag), thus effectively partitioning the burst into two main episodes at ~T+28+/-2 sec. Second, prompt optical emission is nested within intervals of (a) trivial intrinsic gamma-ray spectral lag (~T+12+-2 and ~T+50+/-2 sec) with (b) discontinuities in the hard to soft evolution of the photon index for a power law fit to 15-150 keV Swift-BAT data (~T+8+/-2 and ~T+48+/-1 sec), both of which coincide with the rise (~T+10+/-1 sec) and decline (~T+50+/-1 sec) of prompt optical emission. This potential discovery, robust across heuristic permutations of BAT energy channels and varying temporal bin resolution, provides the first observational evidence for an implicit connection between spectral lag and the dynamics of shocks in the context of canonical fireball phenomenology.
51 - Nicola Omodei 2006
The GLAST Large Area Telescope (LAT) is the next generation satellite experiment for high-energy gamma-ray astronomy. It is a pair conversion telescope built with a plastic anticoincidence shield, a segmented CsI electromagnetic calorimeter, and the largest silicon strip tracker ever built. It will cover the energy range from 30 MeV to 300 GeV, shedding light on many issues left open by its predecessor EGRET. One of the most exciting science topics is the detection and observation of gamma-ray bursts (GRBs). In this paper we present the work done so far by the GRB LAT science group in studying the performance of the LAT detector to observe GRBs. We report on the simulation framework developed by the group as well as on the science tools dedicated to GRBs data analysis. We present the LAT sensitivity to GRBs obtained with such simulations, and, finally, the general scheme of GRBs detection that will be adopted on orbit.
We use a wavelet technique to investigate the time variations in the light curves from a sample of GRBs detected by Fermi and Swift. We focus primarily on the behavior of the flaring region of Swift-XRT light curves in order to explore connections be tween variability time scales and pulse parameters (such as rise and decay times, widths, strengths, and separation distributions) and spectral lags. Tight correlations between some of these temporal features suggest a common origin for the production of X-ray flares and the prompt emission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا