ترغب بنشر مسار تعليمي؟ اضغط هنا

We revisit the relation between H2O maser detection rate and nuclear obscuration for a sample of 114 Seyfert galaxies, drawn from the CfA, 12um and IRAS F25/F60 catalogs. These sources have mid-infrared spectra from the Spitzer Space Telescope and th ey are searched for X-ray and [O III], 5007Angstrom fluxes from the literature. We use the strength of the [O IV], 25.9um emission line as tracer for the intrinsic AGN strength. After normalization by [O IV] the observed X-ray flux provides information about X-ray absorption. The distribution of X-ray / [O IV] flux ratios is significantly different for masers and non-masers: The maser detected Seyfert-2s (Sy 1.8-2.0) populate a distinct X-ray / [O IV] range which is, on average, about a factor four lower than the range of Seyfert-2 non-masers and about a factor of ten lower than the range of Seyfert-1s (Sy 1.0-1.5). Non-masers are almost equally distributed over the entire X-ray / [O IV] range. This provides evidence that high nuclear obscuration plays a crucial role for the probability of maser detection. Furthermore, after normalization with [O IV], we find a similar but weaker trend for the distribution of the maser detection rate with the absorption of the 7um dust continuum. This suggests that the obscuration of the 7 um continuum occurs on larger spatial scales than that of the X-rays. Hence, in the AGN unified model, at moderate deviation from edge-on, the 7um dust absorption may occur without proportionate X-ray absorption. The absorption of [O III] appears unrelated to maser detections. The failure to detect masers in obscured AGN is most likely due to insufficient observational sensitivity.
We present high-quality Keck/LRIS longslit spectroscopy of a pilot sample of 25 local active galaxies selected from the SDSS (0.02<z<0.1; MBH>10^7 M_sun) to study the relations between black hole mass (MBH) and host-galaxy properties. We determine st ellar kinematics of the host galaxy, deriving stellar-velocity dispersion profiles and rotation curves from three spectral regions (including CaH&K, MgIb triplet, and CaII triplet). In addition, we perform surface photometry on SDSS images, using a newly developed code for joint multi-band analysis. BH masses are estimated from the width of the Hbeta emission line and the host-galaxy free 5100A AGN luminosity. Combining results from spectroscopy and imaging allows us to study four MBH scaling relations: MBH-sigma, MBH-L(sph), MBH-M(sph,*), MBH-M(sph,dyn). We find the following results. First, stellar-velocity dispersions determined from aperture spectra (e.g. SDSS fiber spectra or unresolved data from distant galaxies) can be biased, depending on aperture size, AGN contamination, and host-galaxy morphology. However, such a bias cannot explain the offset seen in the MBH-sigma relation at higher redshifts. Second, while the CaT region is the cleanest to determine stellar-velocity dispersions, both the MgIb region, corrected for FeII emission, and the CaHK region, although often swamped by the AGN powerlaw continuum and emission lines, can give results accurate to within a few percent. Third, the MBH scaling relations of our pilot sample agree in slope and scatter with those of other local active and inactive galaxies. In the next papers of the series we will quantify the scaling relations, exploiting the full sample of ~100 objects.
From high-resolution images of 23 Seyfert-1 galaxies at z=0.36 and z=0.57 obtained with the Near Infrared Camera and Multi-Object Spectrometer on board the Hubble Space Telescope (HST), we determine host-galaxy morphology, nuclear luminosity, total h ost-galaxy luminosity and spheroid luminosity. Keck spectroscopy is used to estimate black hole mass (M_BH). We study the cosmic evolution of the M_BH-spheroid luminosity (L_sph) relation. In combination with our previous work, totaling 40 Seyfert-1 galaxies, the covered range in BH mass is substantially increased, allowing us to determine for the first time intrinsic scatter and correct evolutionary trends for selection effects. We re-analyze archival HST images of 19 local reverberation-mapped active galaxies to match the procedure adopted at intermediate redshift. Correcting spheroid luminosity for passive luminosity evolution and taking into account selection effects, we determine that at fixed present-day V-band spheroid luminosity, M_BH/L_sph propto (1+z)^(2.8+/-1.2). When including a sample of 44 quasars out to z=4.5 taken from the literature, with luminosity and BH mass corrected to a self-consistent calibration, we extend the BH mass range to over two orders of magnitude, resulting in M_BH/L_sph propto (1+z)^(1.4+/-0.2). The intrinsic scatter of the relation, assumed constant with redshift, is 0.3+/-0.1 dex (<0.6 dex at 95% CL). The evolutionary trend suggests that BH growth precedes spheroid assembly. Interestingly, the M_BH-total host-galaxy luminosity relation is apparently non-evolving. It hints at either a more fundamental relation or that the spheroid grows by a redistribution of stars. However, the high-z sample does not follow this relation, indicating that major mergers may play the dominant role in growing spheroids above z~1.
We report a search for H2O megamasers in 274 SDSS type-2 AGNs (0.3 < z < 0.83), half of which can be classified as type-2 QSOs from their [OIII] 5007 luminosity, using the Robert C. Byrd Green Bank Telescope (GBT) and the Effelsberg 100-m radio teles cope. Apart from the detection of the extremely luminous water vapor megamaser SDSS J080430.99+360718.1, already reported by Barvainis & Antonucci (2005), we do not find any additional line emission. This high rate of non-detections is compared to the water maser luminosity function created from the 78 water maser galaxies known to date and its extrapolation towards the higher luminosities of gigamasers that we would have been able to detect given the sensitivity of our survey. The properties of the known water masers are summarized and discussed with respect to the nature of high-z type-2 AGNs and megamasers in general. In the appendix, we list 173 additional objects (mainly radio galaxies, but also QSOs and galaxies) that were observed with the GBT, the Effelsberg 100-m radio telescope, or Arecibo Observatory without leading to the detection of water maser emission.
115 - Nicola Bennert 2008
To study the relevance of mergers for the fueling of QSOs, we are currently conducting an HST imaging campaign of a sample of QSO host galaxies classified as ellipticals in the literature. Here, we present results from a study of the first five QSO h ost galaxies imaged with HST/ACS. For the majority of objects, strong signs of interactions such as tidal tails, shells, and other fine structure are revealed. We estimate the nature and age of the merger by comparing the images with numerical simulations. The merger ages range between a few hundred Myr up to a Gyr. These timescales are comparable to starburst ages in the QSO hosts previously inferred from Keck spectroscopy, but longer than theoretical estimates of AGN duty cycles. A possible scenario emerging from our results is that most QSO host galaxies experienced mergers with accompanying starbursts but that the activity is triggered with a delay of several hundreds Myr after the merger. To probe whether there is indeed a causal connection between the merger and the QSO activity, we study a control sample of inactive ellipticals. Our preliminary results do not reveal comparable fine structure.
We present results from a pilot HST ACS deep imaging study in broad-band V of five low-redshift QSO host galaxies classified in the literature as ellipticals. The aim of our study is to determine whether these early-type hosts formed at high redshift and have since evolved passively, or whether they have undergone relatively recent mergers that may be related to the triggering of the nuclear activity. We perform two-dimensional modeling of the light distributions to analyze the host galaxies morphology. We find that, while each host galaxy is reasonably well fitted by a de Vaucouleurs profile, the majority of them (4/5) reveal significant fine structure such as shells and tidal tails. These structures contribute between ~5% and 10% to the total V-band luminosity of each host galaxy within a region of r ~ 3 r_eff and are indicative of merger events that occurred between a few hundred Myr and a Gyr ago. These timescales are comparable to starburst ages in the QSO hosts previously inferred from Keck spectroscopy. Our results thus support a consistent scenario in which most of the QSO host galaxies suffered mergers with accompanying starbursts that likely also triggered the QSO activity in some way, but we are also left with considerable uncertainty on physical mechanisms that might have delayed this triggering for several hundred Myr after the merger.
We present very deep HST/ACS images of five QSO host galaxies, classified as undisturbed ellipticals in earlier studies. For four of the five objects, our images reveal strong signs of interaction such as tidal tails, shells, and other fine structure , suggesting that a large fraction of QSO host galaxies may have experienced a relatively recent merger event. Our preliminary results for a control sample of inactive elliptical galaxies do not reveal comparable fine structure.
We present deep HST/ACS images and Keck spectroscopy of MC2 1635+119, a QSO hosted by a galaxy previously classified as an undisturbed elliptical. Our new images reveal dramatic shell structure indicative of a merger event in the relatively recent pa st. The brightest shells in the central regions of the host are distributed alternately in radius, with at least two distinct shells on one side of the nucleus and three on the other, out to a distance of ~13 kpc. The light within the five shells comprises ~6% of the total galaxy light. Lower surface brightness ripples or tails and other debris extend out to a distance of ~65 kpc. A simple N-body model for a merger reproduces the inner shell structure and gives an estimate for the age of the merger between ~30 Myr and ~1.7 Gyr, depending on a range of reasonable assumptions. While the inner shell structure is suggestive of a minor merger, the total light contribution from the shells and extended structures are more indicative of a major merger. The spectrum of the host galaxy is dominated by a population of intermediate age (~1.4 Gyr), indicating a strong starburst episode that may have occurred at the time of the merger event. We speculate that the current QSO activity may have been triggered in the recent past by either a minor merger, or by debris from an older (~Gyr) major merger that is currently ``raining back into the central regions of the merger remnant.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا