ترغب بنشر مسار تعليمي؟ اضغط هنا

121 - He Li , Zun Wang , Nianlong Zou 2021
The marriage of density functional theory (DFT) and deep learning methods has the potential to revolutionize modern research of material science. Here we study the crucial problem of representing DFT Hamiltonian for crystalline materials of arbitrary configurations via deep neural network. A general framework is proposed to deal with the infinite dimensionality and covariance transformation of DFT Hamiltonian matrix in virtue of locality and use message passing neural network together with graph representation for deep learning. Our example study on graphene-based systems demonstrates that high accuracy ($sim$meV) and good transferability can be obtained for DFT Hamiltonian, ensuring accurate predictions of materials properties without DFT. The Deep Hamiltonian method provides a solution to the accuracy-efficiency dilemma of DFT and opens new opportunities to explore large-scale materials and physics.
Research on topological physics of phonons has attracted enormous interest but demands appropriate model materials. Our {it ab initio} calculations identify silicon as an ideal candidate material containing extraordinarily rich topological phonon sta tes. In silicon, we identify various topological nodal lines protected by glide mirror or mirror symmetries and characterized by quantized Berry phase $pi$, which gives drumhead surface states observable from any surface orientations. Remarkably, a novel type of topological nexus phonon is discovered, which is featured by double Fermi-arc-like surface states and distinguished from Weyl phonons by requiring neither inversion nor time-reversal symmetry breaking. Versatile topological states can be created from the nexus phonons, such as Hopf nodal link by strain. Furthermore, we generalize the symmetry analysis to other centrosymmetric systems and find numerous candidate materials, demonstrating the ubiquitous existence of topological phonons in solids. These findings open up new opportunities for studying topological phonons in realistic materials and their influence on surface physics.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا