ترغب بنشر مسار تعليمي؟ اضغط هنا

Ubiquitous topological states of phonons in solids: Silicon as a model material

108   0   0.0 ( 0 )
 نشر من قبل Yizhou Liu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Research on topological physics of phonons has attracted enormous interest but demands appropriate model materials. Our {it ab initio} calculations identify silicon as an ideal candidate material containing extraordinarily rich topological phonon states. In silicon, we identify various topological nodal lines protected by glide mirror or mirror symmetries and characterized by quantized Berry phase $pi$, which gives drumhead surface states observable from any surface orientations. Remarkably, a novel type of topological nexus phonon is discovered, which is featured by double Fermi-arc-like surface states and distinguished from Weyl phonons by requiring neither inversion nor time-reversal symmetry breaking. Versatile topological states can be created from the nexus phonons, such as Hopf nodal link by strain. Furthermore, we generalize the symmetry analysis to other centrosymmetric systems and find numerous candidate materials, demonstrating the ubiquitous existence of topological phonons in solids. These findings open up new opportunities for studying topological phonons in realistic materials and their influence on surface physics.

قيم البحث

اقرأ أيضاً

We present a fingerprint-like method to analyze material defects after energetic particle irradiation by computing a rotation invariant descriptor vector for each atom of a given sample. For ordered solids this new method is easy to use, does not req uire extreme computational resources, and is largely independent of the sample material and sample temperature. As illustration we applied the method to molecular dynamics simulations of deuterated and pristine tungsten lattices at 300 K using a primary knock-on atom (PKA) of 1 keV with different velocity directions to emulate a neutron bombardment process. The number of W atoms, that are affected after the collision cascade, have been quantified with the presented approach. At first atoms at regular lattice positions as well as common defect types like interstitials and vacancies have been identified using precomputed descriptor vectors. A principal component analysis (PCA) is used to identify previously overlooked defect types and to derive the corresponding local atomic structure. A comparison of the irradiation effects for deuterated and pristine tungsten samples revealed that deuterated samples exhibit consistently more defects than pristine ones.
Transition-metal dichalcogenides (TMDs) are renowned for their rich and varied properties. They range from metals and superconductors to strongly spin-orbit-coupled semiconductors and charge-density-wave systems, with their single-layer variants one of the most prominent current examples of two-dimensional materials beyond graphene. Their varied ground states largely depend on the transition metal d-electron-derived electronic states, on which the vast majority of attention has been concentrated to date. Here, we focus on the chalcogen-derived states. From density-functional theory calculations together with spin- and angle- resolved photoemission, we find that these generically host type-II three-dimensional bulk Dirac fermions as well as ladders of topological surface states and surface resonances. We demonstrate how these naturally arise within a single p-orbital manifold as a general consequence of a trigonal crystal field, and as such can be expected across a large number of compounds. Already, we demonstrate their existence in six separate TMDs, opening routes to tune, and ultimately exploit, their topological physics.
Structural heterogeneity of amorphous solids present difficult challenges that stymie the prediction of plastic events, which are intimately connected to their mechanical behavior. Based on a perturbation analysis of the potential energy landscape, w e derive the atomic nonaffinity as an indicator with intrinsic orientation, which quantifies the contribution of an individual atom to the total nonaffine modulus of the system. We find that the atomic nonaffinity can efficiently characterize the locations of the shear transformation zones, with a predicative capacity comparable to the best indicators. More importantly, the atomic nonaffinity, combining the sign of third order derivative of energy with respect to coordinates, reveals an intrinsic softest shear orientation. By analyzing the angle between this orientation and the shear loading direction, it is possible to predict the protocol-dependent response of plastic events. Employing the new method, the distribution of orientations of shear transformation zones in a model two-dimensional amorphous solids can be measured. The resulting plastic events can be understood from a simple model of independent plastic events occurring at variously oriented shear transformation zones. These results shed light on the characterization and prediction of the mechanical response of amorphous solids.
86 - Yang Wang , Cong Li , Yong Li 2021
Magnetic topological materials have attracted much attention due to the correlation between topology and magnetism. Recent studies suggest that EuCd$_2$As$_2$ is an antiferromagnetic topological material. Here by carrying out thorough magnetic, elect rical and thermodynamic property measurements, we discover a long time relaxation of the magnetic susceptibility in EuCd$_2$As$_2$. The (001) in-plane magnetic susceptibility at 5 K is found to continuously increase up to $sim$10% over the time of $sim$14 hours. The magnetic relaxation is anisotropic and strongly depends on the temperature and the applied magnetic field. These results will stimulate further theoretical and experimental studies to understand the origin of the relaxation process and its effect on the electronic structure and physical properties of the magnetic topological materials.
110 - Jing-Yang You , Xian-Lei Sheng , 2021
The topological metal states in electronic systems have been extensively studied, but topological phonons were explored only in few examples so far. Here, we expose for the first time that the topological nodal gimbal phonons, type-I and type-II Weyl phonons are simultaneously present in T-carbon, a recently realized new allotrope of carbon. At about 15.2 THz, we find that there exist three mutually intersecting nodal loops (named as nodal gimbal phonons) around {Gamma} point, and two pairs of type-I Weyl phonons on the boundary of Brillouin zone around each X point. In addition, there exist three pairs of type-II Weyl phonons at about 14.5 THz around each L point. It is shown that these exotic topological phonons are protected by corresponding symmetries, and lead to topologically nontrivial surface states. Our findings not only afford plenty of intriguing topological phonon states in a simple material like T-carbon but also provide a new platform to study novel properties of topological phonons, which would facilitate further both experimental and theoretical works in future.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا