ترغب بنشر مسار تعليمي؟ اضغط هنا

Recovering the 3D structure of an object from a single image is a challenging task due to its ill-posed nature. One approach is to utilize the plentiful photos of the same object category to learn a strong 3D shape prior for the object. This approach has successfully been demonstrated by a recent work of Wu et al. (2020), which obtained impressive 3D reconstruction networks with unsupervised learning. However, their algorithm is only applicable to symmetric objects. In this paper, we eliminate the symmetry requirement with a novel unsupervised algorithm that can learn a 3D reconstruction network from a multi-image dataset. Our algorithm is more general and covers the symmetry-required scenario as a special case. Besides, we employ a novel albedo loss that improves the reconstructed details and realisticity. Our method surpasses the previous work in both quality and robustness, as shown in experiments on datasets of various structures, including single-view, multi-view, image-collection, and video sets.
139 - Nhat Ho , Stephen G. Walker 2021
We introduce a class of integral theorems based on cyclic functions and Riemann sums approximating integrals theorem. The Fourier integral theorem, derived as a combination of a transform and inverse transform, arises as a special case. The integral theorems provide natural estimators of density functions via Monte Carlo integration. Assessments of the quality of the density estimators can be used to obtain optimal cyclic functions which minimize square integrals. Our proof techniques rely on a variational approach in ordinary differential equations and the Cauchy residue theorem in complex analysis.
We propose a new adaptive empirical Bayes framework, the Bag-Of-Null-Statistics (BONuS) procedure, for multiple testing where each hypothesis testing problem is itself multivariate or nonparametric. BONuS is an adaptive and interactive knockoff-type method that helps improve the testing power while controlling the false discovery rate (FDR), and is closely connected to the counting knockoffs procedure analyzed in Weinstein et al. (2017). Contrary to procedures that start with a $p$-value for each hypothesis, our method analyzes the entire data set to adaptively estimate an optimal $p$-value transform based on an empirical Bayes model. Despite the extra adaptivity, our method controls FDR in finite samples even if the empirical Bayes model is incorrect or the estimation is poor. An extension, the Double BONuS procedure, validates the empirical Bayes model to guard against power loss due to model misspecification.
Taking the Fourier integral theorem as our starting point, in this paper we focus on natural Monte Carlo and fully nonparametric estimators of multivariate distributions and conditional distribution functions. We do this without the need for any esti mated covariance matrix or dependence structure between variables. These aspects arise immediately from the integral theorem. Being able to model multivariate data sets using conditional distribution functions we can study a number of problems, such as prediction for Markov processes, estimation of mixing distribution functions which depend on covariates, and general multivariate data. Estimators are explicit Monte Carlo based and require no recursive or iterative algorithms.
Mini-batch optimal transport (m-OT) has been successfully used in practical applications that involve probability measures with intractable density, or probability measures with a very high number of supports. The m-OT solves several sparser optimal transport problems and then returns the average of their costs and transportation plans. Despite its scalability advantage, the m-OT does not consider the relationship between mini-batches which leads to undesirable estimation. Moreover, the m-OT does not approximate a proper metric between probability measures since the identity property is not satisfied. To address these problems, we propose a novel mini-batching scheme for optimal transport, named Batch of Mini-batches Optimal Transport (BoMb-OT), that finds the optimal coupling between mini-batches and it can be seen as an approximation to a well-defined distance on the space of probability measures. Furthermore, we show that the m-OT is a limit of the entropic regularized version of the BoMb-OT when the regularized parameter goes to infinity. Finally, we carry out extensive experiments to show that the BoMb-OT can estimate a better transportation plan between two original measures than the m-OT. It leads to a favorable performance of the BoMb-OT in the matching and color transfer tasks. Furthermore, we observe that the BoMb-OT also provides a better objective loss than the m-OT for doing approximate Bayesian computation, estimating parameters of interest in parametric generative models, and learning non-parametric generative models with gradient flow.
We consider solving the low rank matrix sensing problem with Factorized Gradient Descend (FGD) method when the true rank is unknown and over-specified, which we refer to as over-parameterized matrix sensing. If the ground truth signal $mathbf{X}^* in mathbb{R}^{d*d}$ is of rank $r$, but we try to recover it using $mathbf{F} mathbf{F}^top$ where $mathbf{F} in mathbb{R}^{d*k}$ and $k>r$, the existing statistical analysis falls short, due to a flat local curvature of the loss function around the global maxima. By decomposing the factorized matrix $mathbf{F}$ into separate column spaces to capture the effect of extra ranks, we show that $|mathbf{F}_t mathbf{F}_t - mathbf{X}^*|_{F}^2$ converges to a statistical error of $tilde{mathcal{O}} ({k d sigma^2/n})$ after $tilde{mathcal{O}}(frac{sigma_{r}}{sigma}sqrt{frac{n}{d}})$ number of iterations where $mathbf{F}_t$ is the output of FGD after $t$ iterations, $sigma^2$ is the variance of the observation noise, $sigma_{r}$ is the $r$-th largest eigenvalue of $mathbf{X}^*$, and $n$ is the number of sample. Our results, therefore, offer a comprehensive picture of the statistical and computational complexity of FGD for the over-parameterized matrix sensing problem.
112 - Nhat Ho , Stephen G. Walker 2020
Starting with the Fourier integral theorem, we present natural Monte Carlo estimators of multivariate functions including densities, mixing densities, transition densities, regression functions, and the search for modes of multivariate density functi ons (modal regression). Rates of convergence are established and, in many cases, provide superior rates to current standard estimators such as those based on kernels, including kernel density estimators and kernel regression functions. Numerical illustrations are presented.
Relational regularized autoencoder (RAE) is a framework to learn the distribution of data by minimizing a reconstruction loss together with a relational regularization on the latent space. A recent attempt to reduce the inner discrepancy between the prior and aggregated posterior distributions is to incorporate sliced fused Gromov-Wasserstein (SFG) between these distributions. That approach has a weakness since it treats every slicing direction similarly, meanwhile several directions are not useful for the discriminative task. To improve the discrepancy and consequently the relational regularization, we propose a new relational discrepancy, named spherical sliced fused Gromov Wasserstein (SSFG), that can find an important area of projections characterized by a von Mises-Fisher distribution. Then, we introduce two variants of SSFG to improve its performance. The first variant, named mixture spherical sliced fused Gromov Wasserstein (MSSFG), replaces the vMF distribution by a mixture of von Mises-Fisher distributions to capture multiple important areas of directions that are far from each other. The second variant, named power spherical sliced fused Gromov Wasserstein (PSSFG), replaces the vMF distribution by a power spherical distribution to improve the sampling time in high dimension settings. We then apply the new discrepancies to the RAE framework to achieve its new variants. Finally, we conduct extensive experiments to show that the new proposed autoencoders have favorable performance in learning latent manifold structure, image generation, and reconstruction.
181 - Tianyi Lin , Chenyou Fan , Nhat Ho 2020
Projection robust Wasserstein (PRW) distance, or Wasserstein projection pursuit (WPP), is a robust variant of the Wasserstein distance. Recent work suggests that this quantity is more robust than the standard Wasserstein distance, in particular when comparing probability measures in high-dimensions. However, it is ruled out for practical application because the optimization model is essentially non-convex and non-smooth which makes the computation intractable. Our contribution in this paper is to revisit the original motivation behind WPP/PRW, but take the hard route of showing that, despite its non-convexity and lack of nonsmoothness, and even despite some hardness results proved by~citet{Niles-2019-Estimation} in a minimax sense, the original formulation for PRW/WPP textit{can} be efficiently computed in practice using Riemannian optimization, yielding in relevant cases better behavior than its convex relaxation. More specifically, we provide three simple algorithms with solid theoretical guarantee on their complexity bound (one in the appendix), and demonstrate their effectiveness and efficiency by conducing extensive experiments on synthetic and real data. This paper provides a first step into a computational theory of the PRW distance and provides the links between optimal transport and Riemannian optimization.
79 - Khai Nguyen , Nhat Ho , Tung Pham 2020
Sliced-Wasserstein distance (SW) and its variant, Max Sliced-Wasserstein distance (Max-SW), have been used widely in the recent years due to their fast computation and scalability even when the probability measures lie in a very high dimensional spac e. However, SW requires many unnecessary projection samples to approximate its value while Max-SW only uses the most important projection, which ignores the information of other useful directions. In order to account for these weaknesses, we propose a novel distance, named Distributional Sliced-Wasserstein distance (DSW), that finds an optimal distribution over projections that can balance between exploring distinctive projecting directions and the informativeness of projections themselves. We show that the DSW is a generalization of Max-SW, and it can be computed efficiently by searching for the optimal push-forward measure over a set of probability measures over the unit sphere satisfying certain regularizing constraints that favor distinct directions. Finally, we conduct extensive experiments with large-scale datasets to demonstrate the favorable performances of the proposed distances over the previous sliced-based distances in generative modeling applications.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا