ترغب بنشر مسار تعليمي؟ اضغط هنا

Variational methods have proven to be excellent tools to approximate ground states of complex many body Hamiltonians. Generic tools like neural networks are extremely powerful, but their parameters are not necessarily physically motivated. Thus, an e fficient parametrization of the wave-function can become challenging. In this letter we introduce a neural-network based variational ansatz that retains the flexibility of these generic methods while allowing for a tunability with respect to the relevant correlations governing the physics of the system. We illustrate the success of this approach on topological, long-range correlated and frustrated models. Additionally, we introduce compatible variational optimization methods for exploration of low-lying excited states without symmetries that preserve the interpretability of the ansatz.
We study effectively one-dimensional systems that emerge at the edge of a two-dimensional topologically ordered state, or at the boundary between two topologically ordered states. We argue that anyons of the bulk are associated with emergent symmetri es of the edge, which play a crucial role in the structure of its phase diagram. Using this symmetry principle, transitions between distinct gapped phases at the boundaries of Abelian states can be understood in terms of symmetry breaking transitions or transitions between symmetry protected topological phases. Yet more exotic phenomena occur when the bulk hosts non-Abelian anyons. To demonstrate these principles, we explore the phase diagrams of the edges of a single and a double layer of the toric code, as well as those of domain walls in a single and double-layer Kitaev spin liquid (KSL). In the case of the KSL, we find that the presence of a non-Abelian anyon in the bulk enforces Kramers-Wannier self-duality as a symmetry of the effective boundary theory. These examples illustrate a number of surprising phenomena, such as spontaneous duality-breaking, two-sector phase transitions, and unfreezing of marginal operators at a transition between different gapless phases.
Quantum dots are arguably the best interface between matter spin qubits and flying photonic qubits. Using quantum dot devices to produce joint spin-photonic states requires the electronic spin qubits to be stored for extended times. Therefore, the st udy of the coherence of spins of various quantum dot confined charge carriers is important both scientifically and technologically. In this study we report on spin relaxation measurements performed on five different forms of electronic spin qubits confined in the very same quantum dot. In particular, we use all optical techniques to measure the spin relaxation of the confined heavy hole and that of the dark exciton - a long lived electron-heavy hole pair with parallel spins. Our measured results for the spin relaxation of the electron, the heavy-hole, the dark exciton, the negative and the positive trions, in the absence of externally applied magnetic field, are in agreement with a central spin theory which attributes the dephasing of the carriers spin to their hyperfine interactions with the nuclear spins of the atoms forming the quantum dots. We demonstrate that the heavy hole dephases much slower than the electron. We also show, both experimentally and theoretically, that the dark exciton dephases slower than the heavy hole, due to the electron-hole exchange interaction, which partially protects its spin state from dephasing.
Magneto-transport of hard core bosons (HCB) is studied using an XXZ quantum spin model representation, appropriately gauged on the torus to allow for an external magnetic field. We find strong lattice effects near half filling. An effective quantum m echanical description of the vortex degrees of freedom is derived. Using semiclassical and numerical analysis we compute the vortex hopping energy, which at half filling is close to magnitude of the boson hopping energy. The critical quantum melting density of the vortex lattice is estimated at 6.5x10-5 vortices per unit cell. The Hall conductance is computed from the Chern numbers of the low energy eigenstates. At zero temperature, it reverses sign abruptly at half filling. At precisely half filling, all eigenstates are doubly degenerate for any odd number of flux quanta. We prove the exact degeneracies on the torus by constructing an SU(2) algebra of point-group symmetries, associated with the center of vorticity. This result is interpreted as if each vortex carries an internal spin-half degree of freedom (vspin), which can manifest itself as a charge density modulation in its core. Our findings suggest interesting experimental implications for vortex motion of cold atoms in optical lattices, and magnet-transport of short coherence length superconductors.
A strong periodic potential generally enhances the short wavelength fluctuations of a superfluid beyond the validity of standard continuum approaches. Here we report some recent results on hard core bosons on finite lattices. We find several interest ing effects of the periodic potential on the ground state, vortex dynamics, and and Hall conductivity. For example, the Magnus field on a vortex abruptly reverses direction at half filling. A rotating Bose condensate on an optical lattice may allow an experimental test of our results. Insight may also be gained about strongly fluctuating superconductors modelled by charge 2e lattice bosons.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا