ترغب بنشر مسار تعليمي؟ اضغط هنا

It is shown that the category of emph{semi-biproducts} of monoids is equivalent to the category of emph{pseudo-actions}. A semi-biproduct of monoids is a new notion, obtained through generalizing a biproduct of commutative monoids. By dropping commut ativity and requiring some of the homomorphisms in the biproduct diagram to be merely identity-preserving maps, we obtain a semi-biproduct. A pseudo-action is a new notion as well. It consists of three ingredients: a pre-action, a factor system and a correction system. In the category of groups all correction systems are trivial. This is perhaps the reason why this notion, to the authors best knowledge, has never been considered before.
The structure of topological spaces is analysed here through the lenses of fibrous preorders. Each topological space has an associated fibrous preorder and those fibrous preorders which return a topological space are called spacial. A special class o f spacial fibrous preorders consisting of an interconnected family of preorders indexed by a unitary magma is called cartesian and studied here. Topological spaces that are obtained from those fibrous preorders, with a unitary magma emph{I}, are called emph{I}-cartesian and characterized. The characterization reveals a hidden structure of such spaces. Several other characterizations are obtained and special attention is drawn to the case of a monoid equipped with a topology. A wide range of examples is provided, as well as general procedures to obtain topologies from other data types such as groups and their actions. Metric spaces and normed spaces are considered as well.
Properties of preordered monoids are investigated and important subclasses of such structures are studied. The corresponding full subcategories of the category of preordered monoids are functorially related between them as well as with the categories of preordered sets and monoids. Schreier split extensions are described in the full subcategory of preordered monoids whose preorder is determined by the corresponding positive cone.
It is shown that the category of semi-biproducts in monoids is equivalent to a category of pseudo-actions. A semi-biproduct in monoids is at the same time a generalization of a semi-direct product in groups and a biproduct in commutative monoids. Eve ry Schreier extension of monoids can be seen as an instance of a semi-biproduct; namely a semi-biproduct whose associated pseudo-action has a trivial correction system. A correction system is a new ingredient that must be inserted in order to obtain a pseudo-action out of a pre-action and a factor system. In groups, every correction system is trivial. Hence, semi-biproducts there are the same as semi-direct products with a factor system, which are nothing but group extensions. An attempt to establish a general context in which to define semi-biproducts is made. As a result, a new structure of map-transformations is obtained from a category with a 2-cell structure. Examples and first basic properties are briefly explored.
A classification theorem for three different sorts of Maltsev categories is proven. The theorem provides a classification for Maltsev category, naturally Maltsev category, and weakly Maltsev category in terms of classifying classes of spans. The clas s of all spans characterizes naturally Maltsev categories. The class of relations (i.e. jointly monomorphic spans) characterizes Maltsev categories. The class of strong relations (i.e. jointly strongly monomorphic spans) characterizes weakly Maltsev categories. The result is based on the uniqueness of internal categorical structures such as internal category and internal groupoid (Lawvere condition). The uniqueness of these structures is viewed as a property on their underlying reflexive graphs, restricted to the classifying spans. The class of classifying spans is combined, via a new compatibility condition, with split squares. This is analogous to orthogonality between spans and cospans. The result is a general classifying scheme which covers the main characterizations for Maltsev like categories. The class of positive relations has recently been shown to characterize Goursat categories and hence it is a new example that fits in this general scheme.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا