ترغب بنشر مسار تعليمي؟ اضغط هنا

When dealing with system-reservoir interactions in an open quantum system, such as a photosynthetic light-harvesting complex, approximations are usually made to obtain the dynamics of the system. One question immediately arises: how good are these ap proximations, and in what ways can we evaluate them? Here, we propose to use entanglement and a measure of non-Markovianity as benchmarks for the deviation of approximate methods from exact results. We apply two frequently-used perturbative but non-Markovian approximations to a photosynthetic dimer model and compare their results with that of the numerically-exact hierarchy equation of motion (HEOM). This enables us to explore both entanglement and non-Markovianity measures as means to reveal how the approximations either overestimate or underestimate memory effects and quantum coherence. In addition, we show that both the approximate and exact results suggest that non-Markonivity can, counter-intuitively, increase with temperature, and with the coupling to the environment.
Einstein-Podolsky-Rosen (EPR) steering is a type of quantum correlation which allows one to remotely prepare, or steer, the state of a distant quantum system. While EPR steering can be thought of as a purely spatial correlation there does exist a tem poral analogue, in the form of single-system temporal steering. However, a precise quantification of such temporal steering has been lacking. Here we show that it can be measured, via semidefinite programming, with a temporal steerable weight, in direct analogy to the recently proposed EPR steerable weight. We find a useful property of the temporal steerable weight in that it is a non-increasing function under completely-positive trace-preserving maps and can be used to define a sufficient and practical measure of strong non-Markovianity.
We propose a scheme to realize entanglement swapping via superradiance, entangling two distant cavities without a direct interaction. The successful Bell-state-measurement outcomes are performed naturally by the electromagnetic reservoir, and we show how, using a quantum trajectory method, the non-local properties of the state obtained after the swapping procedure can be verified by the steering inequality. Furthermore, we discuss how the unsuccessful measurement outcomes can be used in an experiment of delayed-choice entanglement swapping. An extension of testing the quantum steering inequality with the observers at three different times is also considered
Quantum steering is the ability to remotely prepare different quantum states by using entangled pairs as a resource. Very recently, the concept of steering has been quantified with the use of inequalities, leading to substantial applications in quant um information and communication science. Here, we highlight that there exists a natural temporal analogue of the steering inequality when considering measurements on a single object at different times. We give non-trivial operational meaning to violations of this temporal inequality by showing that it is connected to the security bound in the BB84 protocol and thus may have applications in quantum communication.
The mechanism used by migratory birds to orientate themselves using the geomagnetic field is still a mystery in many species. The radical pair mechanism, in which very weak magnetic fields can influence certain types of spin-dependent chemical reacti ons, leading to biologically observable signals, has recently imposed itself as one of the most promising candidates for certain species. This is thanks both to its extreme sensitivity and its capacity to reproduce results from behavioral studies. Still, in order to gain a directional sensitivity, an anisotropic mechanism is needed. Recent proposals have explored the possibility that such an anisotropy is due to the electron-nucleus hyperfine interaction. In this work we explore a different possibility, in which the anisotropy is due to spin-orbit coupling between the electron spin and its angular momentum. We will show how a spin-orbit-coupling-based magnetic compass can have performances comparable with the usually-studied nuclear-hyperfine based mechanism. Our results could thus help researchers actively looking for candidate biological molecules which may host magnetoreceptive functions, both to describe magnetoreception in birds as well as to develop artificial chemical compass systems.
We investigate, using the Hierarchy method, the entanglement and the excitation transfer efficiency of the Fenna-Matthews-Olson complex under two different local modifications: the suppression of transitions between particular sites and localized cha nges to the protein environment. We find that inhibiting the connection between the site-5 and site-6, or disconnecting site-5 from the complex completely, leads to an dramatic enhancement of the entanglement between site-6 and site-7. Similarly, the transfer efficiency actually increases if site-5 is disconnected from the complex entirely. We further show that if site-5 and site-7 are conjointly removed, the efficiency falls. This suggests that while not contributing to the transport efficiency in a normal complex, site-5 introduces a redundant transport route in case of damage to site-7. Our results suggest an overall robustness of excitation energy transfer in the FMO complex under mutations, local defects, and other abnormal situations.
Is there a functional role for quantum mechanics or coherent quantum effects in biological processes? While this question is as old as quantum theory, only recently have measurements on biological systems on ultra-fast time-scales shed light on a pos sible answer. In this review we give an overview of the two main candidates for biological systems which may harness such functional quantum effects: photosynthesis and magnetoreception. We discuss some of the latest evidence both for and against room temperature quantum coherence, and consider whether there is truly a functional role for coherence in these biological mechanisms. Finally, we give a brief overview of some more speculative examples of functional quantum biology including the sense of smell, long-range quantum tunneling in proteins, biological photoreceptors, and the flow of ions across a cell membrane.
We show how to apply the Leggett-Garg inequality to opto-electro-mechanical systems near their quantum ground state. We find that by using a dichotomic quantum non-demolition measurement (via, e.g., an additional circuit-QED measurement device) eithe r on the cavity or on the nanomechanical system itself, the Leggett-Garg inequality is violated. We argue that only measurements on the mechanical system itself give a truly unambigous violation of the Leggett-Garg inequality for the mechanical system. In this case, a violation of the Leggett-Garg inequality indicates physics beyond that of macroscopic realism is occurring in the mechanical system. Finally, we discuss the difficulties in using unbound non-dichotomic observables with the Leggett-Garg inequality.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا