ترغب بنشر مسار تعليمي؟ اضغط هنا

Enabling applications for solid state quantum technology will require systematically reducing noise, particularly dissipation, in these systems. Yet, when multiple decay channels are present in a system with similar weight, resolution to distinguish relatively small changes is necessary to infer improvements to noise levels. For superconducting qubits, uncontrolled variation of nominal performance makes obtaining such resolution challenging. Here, we approach this problem by investigating specific combinations of previously reported fabrication techniques on the quality of 242 thin film superconducting resonators and qubits. Our results quantify the influence of elementary processes on dissipation at key interfaces. We report that an end-to-end optimization of the manufacturing process that integrates multiple small improvements together can produce an average ${overline{T}_{1}=76pm13~mu}$s across 24 qubits with the best qubits having ${T_1geq110~mu}$s. Moreover, our analysis places bounds on energy decay rates for three fabrication-related loss channels present in state-of-the-art superconducting qubits. Understanding dissipation through such systematic analysis may pave the way for lower noise solid state quantum computers.
Superconductivity in Dirac electrons has recently been proposed as a new platform between novel concepts in high-energy and condensed matter physics. It has been proposed that supersymmetry and exotic quasiparticles, both of which remain elusive in p article physics, may be realized as emergent particles in superconducting Dirac electron systems. Using artificially fabricated topological insulator-superconductor heterostructures, we present direct spectroscopic evidence for the existence of Cooper pairing in a half Dirac gas 2D topological superconductor. Our studies reveal that superconductivity in a helical Dirac gas is distinctly different from that of in an ordinary two-dimensional superconductor while considering the spin degrees of freedom of electrons. We further show that the pairing of Dirac electrons can be suppressed by time-reversal symmetry breaking impurities removing the distinction. Our demonstration and momentum-space imaging of Cooper pairing in a half Dirac gas and its magnetic behavior taken together serve as a critically important 2D topological superconductor platform for future testing of novel fundamental physics predictions such as emergent supersymmetry and quantum criticality in topological systems.
Novel phases of two dimensional electron systems resulting from new surface or interface modified electronic structures have generated significant interest in material science. We utilize photoemission spectroscopy to show that the near-surface elect ronic structure of a bulk insulating iridate Sr$_3$Ir$_2$O$_7$ lying near metal-Mott insulator transition exhibit weak metallicity signified by finite electronic spectral weight at the Fermi level. The surface electrons exhibit a unique spin structure resulting from an interplay of spin-orbit, Coulomb interaction and surface quantum magnetism, distinct from a topological insulator state. Our results suggest the experimental realization of a novel quasi two dimensional interacting electron surface ground state, opening the door for exotic quantum entanglement and transport phenomena in iridate-based oxide devices.
The Kondo insulator SmB6 has long been known to exhibit low temperature transport anomalies whose origin is of great interest. Here we uniquely access the surface electronic structure of the anomalous transport regime by combining state-of-the-art la ser- and synchrotron-based angle-resolved photoemission techniques. We observe clear in-gap states (up to 4 meV), whose temperature dependence is contingent upon the Kondo gap formation. In addition, our observed in-gap Fermi surface oddness tied with the Kramers points topology, their coexistence with the two-dimensional transport anomaly in the Kondo hybridization regime, as well as their robustness against thermal recycling, taken together, collectively provide by-far the strongest evidence for protected surface metallicity with a Fermi surface whose topology is consistent with the theoretically predicted topological surface Fermi surface (TSS). Our observations of systematic surface electronic structure provide the fundamental electronic parameters for the anomalous Kondo ground state of the correlated electron material SmB6.
A Z2 topological insulator protected by time-reversal symmetry is realized via spin-orbit interaction driven band inversion. For example, the topological phase in the Bi-Sb system is due to an odd number of band
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا