ترغب بنشر مسار تعليمي؟ اضغط هنا

Forecasting influenza like illnesses (ILI) has rapidly progressed in recent years from an art to a science with a plethora of data-driven methods. While these methods have achieved qualified success, their applicability is limited due to their inabil ity to incorporate expert feedback and guidance systematically into the forecasting framework. We propose a new approach leveraging the Seldonian optimization framework from AI safety and demonstrate how it can be adapted to epidemic forecasting. We study two types of guidance: smoothness and regional consistency of errors, where we show that by its successful incorporation, we are able to not only bound the probability of undesirable behavior to happen, but also to reduce RMSE on test data by up to 17%.
Network embeddings have become very popular in learning effective feature representations of networks. Motivated by the recent successes of embeddings in natural language processing, researchers have tried to find network embeddings in order to explo it machine learning algorithms for mining tasks like node classification and edge prediction. However, most of the work focuses on finding distributed representations of nodes, which are inherently ill-suited to tasks such as community detection which are intuitively dependent on subgraphs. Here, we propose sub2vec, an unsupervised scalable algorithm to learn feature representations of arbitrary subgraphs. We provide means to characterize similarties between subgraphs and provide theoretical analysis of sub2vec and demonstrate that it preserves the so-called local proximity. We also highlight the usability of sub2vec by leveraging it for network mining tasks, like community detection. We show that sub2vec gets significant gains over state-of-the-art methods and node-embedding methods. In particular, sub2vec offers an approach to generate a richer vocabulary of features of subgraphs to support representation and reasoning.
We show that partial evaluation can be usefully viewed as a programming model for realizing mixed-initiative functionality in interactive applications. Mixed-initiative interaction between two participants is one where the parties can take turns at a ny time to change and steer the flow of interaction. We concentrate on the facet of mixed-initiative referred to as `unsolicited reporting and demonstrate how out-of-turn interactions by users can be modeled by `jumping ahead to nested dialogs (via partial evaluation). Our approach permits the view of dialog management systems in terms of their native support for staging and simplifying interactions; we characterize three different voice-based interaction technologies using this viewpoint. In particular, we show that the built-in form interpretation algorithm (FIA) in the VoiceXML dialog management architecture is actually a (well disguised) combination of an interpreter and a partial evaluator.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا