ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper, we consider a linear quantum network composed of two distantly separated cavities that are connected via a one-way optical field. When one of the cavity is damped and the other is undamped, the overall cavity state obtains a large amou nt of entanglement in its quadratures. This entanglement however immediately decays and vanishes in a finite time. That is, entanglement sudden-death occurs. We show that the direct measurement feedback method proposed by Wiseman can avoid this entanglement sudden-death, and further, enhance the entanglement. It is also shown that the entangled state under feedback control is robust against signal loss in a realistic detector, indicating the reliability of the proposed direct feedback method in practical situations.
This paper studies a quantum risk-sensitive estimation problem and investigates robustness properties of the filter. This is a direct extension to the quantum case of analogous classical results. All investigations are based on a discrete approximati on model of the quantum system under consideration. This allows us to study the problem in a simple mathematical setting. We close the paper with some examples that demonstrate the robustness of the risk-sensitive estimator.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا