ﻻ يوجد ملخص باللغة العربية
In this paper, we consider a linear quantum network composed of two distantly separated cavities that are connected via a one-way optical field. When one of the cavity is damped and the other is undamped, the overall cavity state obtains a large amount of entanglement in its quadratures. This entanglement however immediately decays and vanishes in a finite time. That is, entanglement sudden-death occurs. We show that the direct measurement feedback method proposed by Wiseman can avoid this entanglement sudden-death, and further, enhance the entanglement. It is also shown that the entangled state under feedback control is robust against signal loss in a realistic detector, indicating the reliability of the proposed direct feedback method in practical situations.
We explore the dynamics of the entanglement in a semiconductor cavity QED containing a quantum well. We show the presence of sudden birth and sudden death for some particular sets of the system parameters.
The occurrence of entanglement sudden death in the evolution of a bipartite system depends on both the initial state and the channel responsible for the evolution. An extreme case is that of entanglement braking channels, which are channels that acti
We investigate the entanglement evolution of two qubits interacting with a common environment trough an Heisenberg XX mechanism. We reveal the possibility of realizing the phenomenon of entanglement sudden death as well as the entanglement sudden bir
We present a constructive argument to demonstrate the universality of the sudden death of entanglement in the case of two non-interacting qubits, each of which generically coupled to independent Markovian environments at zero temperature. Conditions
We investigate the effects of error correction on non-local quantum coherence as a function of time, extending the study by Sainz and Bjork. We consider error correction of amplitude damping, pure phase damping and combinations of amplitude and phase