ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the geometry and the internal structure of the outflowing wind from the accretion disk of a quasar by observing multiple sightlines with the aid of strong gravitational lensing. Using Subaru/HDS, we performed high-resolution ($R$ $sim$ 36,00 0) spectroscopic observations of images A and B of the gravitationally lensed quasar SDSS J1029+2623 (at $z_{em}$ $sim$ 2.197) whose image separation angle, $theta$ $sim$ 22$^{primeprime}!!$.5, is the largest among those discovered so far. We confirm that the difference in absorption profiles in the images A and B discovered by Misawa et al. (2013) remains unchanged since 2010, implying the difference is not due to time variability of the absorption profiles over the delay between the images, $Delta t$ $sim$ 744 days, but rather due to differences along the sightlines. We also discovered time variation of C IV absorption strength in both images A and B, due to change of ionization condition. If a typical absorbers size is smaller than its distance from the flux source by more than five orders of magnitude, it should be possible to detect sightline variations among images of other smaller separation, galaxy-scale gravitationally lensed quasars.
We report the discovery of four doubly imaged quasar lenses. All the four systems are selected as lensed quasar candidates from the Sloan Digital Sky Survey data. We confirm their lensing hypothesis with additional imaging and spectroscopic follow-up observations. The discovered lenses are SDSS J0743+2457 with the source redshift z_s=2.165, the lens redshift z_l=0.381, and the image separation theta=1.034, SDSS J1128+2402 with z_s=1.608 and theta=0.844, SDSS J1405+0959 with z_s=1.810, z_l~0.66, and theta=1.978, and SDSS J1515+1511 with z_s=2.054, z_l=0.742, and theta=1.989. It is difficult to estimate the lens redshift of SDSS J1128+2402 from the current data. Two of the four systems (SDSS J1405+0959 and SDSS J1515+1511) are included in our final statistical lens sample to derive constraints on dark energy and the evolution of massive galaxies.
Based on optical and X-ray data for a sample of 34 relaxed rich clusters of galaxies with redshifts of 0.1-0.9, we studied relative spatial distributions of the two major baryon contents, the cluster galaxies and the hot plasmas. Using multi-band pho tometric data taken with the UH88 telescope, we determined the integrated (two dimensional) radial light profiles of member galaxies in each cluster using two independent approaches, i.e., the background subtraction and the color-magnitude filtering. The ICM mass profile of each cluster in our sample, also integrated in two dimensions, was derived from a spatially-resolved spectral analysis using XMM-Newton and Chandra data. Then, the radially-integrated light profile of each cluster was divided by its ICM mass profile, to obtain a profile of galaxy light vs. ICM mass ratio. The ratio profiles over the central 0.65 R500 regions were found to steepen from the higher- to lower- redshift subsamples, meaning that the galaxies become more concentrated in the ICM sphere towards lower redshifts. The evolution is also seen in galaxy number vs. ICM mass ratio profiles. A range of systematic uncertainties in the galaxy light measurements, as well as many radius-/redshift- dependent biases to the galaxy vs. ICM profiles have been assessed, but none of them is significant against the observed evolution. Besides, the galaxy light vs. total mass ratio profiles also exhibit gradual concentration towards lower redshift. We interpret in the context that the galaxies, the ICM, and the dark matter components followed a similar spatial distribution in the early phase (z>0.5), while the galaxies have fallen towards the center relative to the others at a later phase.
We study the origin of absorption features on the blue side of the C IV broad emission line of the large-separation lensed quasar SDSS J1029+2623 at z_em ~ 2.197. The quasar images, produced by a foreground cluster of galaxies, have a maximum separat ion angle of ~ 22.5. The large angular separation suggests that the sight-lines to the quasar central source can go through different regions of outflowing winds from the accretion disk of the quasar, providing a unique opportunity to study the structure of outflows from the accretion disk, a key ingredient for the evolution of quasars as well as for galaxy formation and evolution. Based on medium- and high-resolution spectroscopy of the two brightest images conducted at the Subaru telescope, we find that each image has different intrinsic levels of absorptions, which can be attributed either to variability of absorption features over the time delay between the lensed images, ~ 774 days, or to the fine structure of quasar outflows probed by the multiple sight-lines toward the quasar. While both these scenarios are consistent with the current data, we argue that they can be distinguished with additional spectroscopic monitoring observations.
We present the final statistical sample of lensed quasars from the Sloan Digital Sky Survey (SDSS) Quasar Lens Search (SQLS). The well-defined statistical lens sample consists of 26 lensed quasars brighter than i=19.1 and in the redshift range of 0.6 <z<2.2 selected from 50,836 spectroscopically confirmed quasars in the SDSS Data Release 7 (DR7), where we restrict the image separation range to 1<theta<20 and the i-band magnitude differences in two image lenses to be smaller than 1.25 mag. The SDSS DR7 quasar catalog also contains 36 additional lenses identified with various techniques. In addition to these lensed quasars, we have identified 81 pairs of quasars from follow-up spectroscopy, 26 of which are physically associated binary quasars. The statistical lens sample covers a wide range of image separations, redshifts, and magnitudes, and therefore is suitable for systematic studies of cosmological parameters and surveys of the structure and evolution of galaxies and quasars.
The quasar SDSS J133401.39+331534.3 at z = 2.426 is found to be a two-image gravitationally lensed quasar with the image separation of 0.833. The object is first identified as a lensed quasar candidate in the Sloan Digital Sky Survey Quasar Lens Sear ch, and then confirmed as a lensed system from follow-up observations at the Subaru and University of Hawaii 2.2-meter telescopes. We estimate the redshift of the lensing galaxy to be 0.557 based on absorption lines in the quasar spectra as well as the color of the galaxy. In particular, we observe the system with the Subaru Telescope AO188 adaptive optics with laser guide star, in order to derive accurate astrometry, which well demonstrates the usefulness of the laser guide star adaptive optics imaging for studying strong lens systems. Our mass modeling with improved astrometry implies that a nearby bright galaxy $sim 4$ apart from the lensing galaxy is likely to affect the lens potential.
We present the second report of our systematic search for strongly lensed quasars from the data of the Sloan Digital Sky Survey (SDSS). From extensive follow-up observations of 136 candidate objects, we find 36 lenses in the full sample of 77,429 spe ctroscopically confirmed quasars in the SDSS Data Release 5. We then define a complete sample of 19 lenses, including 11 from our previous search in the SDSS Data Release 3, from the sample of 36,287 quasars with i<19.1 in the redshift range 0.6<z<2.2, where we require the lenses to have image separations of 1<theta<20 and i-band magnitude differences between the two images smaller than 1.25 mag. Among the 19 lensed quasars, 3 have quadruple-image configurations, while the remaining 16 show double images. This lens sample constrains the cosmological constant to be Omega_Lambda=0.84^{+0.06}_{-0.08}(stat.)^{+0.09}_{-0.07}(syst.) assuming a flat universe, which is in good agreement with other cosmological observations. We also report the discoveries of 7 binary quasars with separations ranging from 1.1 to 16.6, which are identified in the course of our lens survey. This study concludes the construction of our statistical lens sample in the full SDSS-I data set.
We report the discovery of five gravitationally lensed quasars from the Sloan Digital Sky Survey (SDSS). All five systems are selected as two-image lensed quasar candidates from a sample of high-redshift (z>2.2) SDSS quasars. We confirmed their lensi ng nature with additional imaging and spectroscopic observations. The new systems are SDSS J0819+5356 (source redshift z_s=2.237, lens redshift z_l=0.294, and image separation theta=4.04), SDSS J1254+2235 (z_s=3.626, theta=1.56), SDSS J1258+1657 (z_s=2.702, theta=1.28), SDSS J1339+1310 (z_s=2.243, theta=1.69), and SDSS J1400+3134 (z_s=3.317, theta=1.74). We estimate the lens redshifts of the latter four systems to be z_l=0.2-0.8 from the colors and magnitudes of the lensing galaxies. We find that the image configurations of all systems are well reproduced by standard mass models. Although these lenses will not be included in our statistical sample of z_s<2.2 lenses, they expand the number of lensed quasars which can be used for high-redshift galaxy and quasar studies.
We present the results of deep spectroscopy for the central region of the cluster lens SDSS J1004+4112 with the Subaru telescope. A secure detection of an emission line of the faint blue stellar object (component E) near the center of the brightest c luster galaxy (G1) confirms that it is the central fifth image of the lensed quasar system. In addition, we measure the stellar velocity dispersion of G1 to be sigma_* = 352+-13 km/s. We combine these results to obtain constraints on the mass M_BH of the putative black hole (BH) at the center of the inactive galaxy G1, and hence on the M_BH-sigma_* relation at the lens redshift z_l=0.68. From detailed mass modeling, we place an upper limit on the black hole mass, M_BH < 2.1x10^{10}M_sun at 1-sigma level (<3.1x10^{10}M_sun at 3-sigma), which is consistent with black hole masses expected from the local and redshift-evolved M_BH-sigma_* relations, M_BH~10^{9}-10^{10}M_sun.
We identify a third image in the unique quasar lens SDSS J1029+2623, the second known quasar lens produced by a massive cluster of galaxies. The spectrum of the third image shows similar emission and absorption features, but has a redder continuum th an the other two images which can be explained by differential extinction or microlensing. We also identify several lensed arcs. Our observations suggest a complicated structure of the lens cluster at z~0.6. We argue that the three lensed images are produced by a naked cusp on the basis of successful mass models, the distribution of cluster member galaxies, and the shapes and locations of the lensed arcs. Lensing by a naked cusp is quite rare among galaxy-scale lenses but is predicted to be common among large-separation lensed quasars. Thus the discovery can be viewed as support for an important theoretical prediction of the standard cold dark matter model.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا