ترغب بنشر مسار تعليمي؟ اضغط هنا

We perform a detailed modelling of the post-outburst surface emission of the low magnetic field magnetar SGR 0418+5729. The dipolar magnetic field of this source, B=6x10^12 G estimated from its spin-down rate, is in the observed range of magnetic fie lds for normal pulsars. The source is further characterized by a high pulse fraction and a single-peak profile. Using synthetic temperature distribution profiles, and fully accounting for the general-relativistic effects of light deflection and gravitational redshift, we generate synthetic X-ray spectra and pulse profiles that we fit to the observations. We find that asymmetric and symmetric surface temperature distributions can reproduce equally well the observed pulse profiles and spectra of SGR 0418. Nonetheless, the modelling allows us to place constraints on the system geometry (i.e. the angles $psi$ and $xi$ that the rotation axis makes with the line of sight and the dipolar axis, respectively), as well as on the spot size and temperature contrast on the neutron star surface. After performing an analysis iterating between the pulse profile and spectra, as done in similar previous works, we further employed, for the first time in this context, a Markov-Chain Monte-Carlo approach to extract constraints on the model parameters from the pulse profiles and spectra, simultaneously. We find that, to reproduce the observed spectrum and flux modulation: (a) the angles must be restricted to $65deg < psi+xi < 125deg$ or $235deg < psi+xi <295deg$; (b) the temperature contrast between the poles and the equator must be at least a factor of $sim6$, and (c) the size of the hottest region ranges between 0.2-0.7 km (including uncertainties on the source distance). Last, we interpret our findings within the context of internal and external heating models.
77 - Alice Borghese 2015
We present the discovery of a strongly phase-variable absorption feature in the X-ray spectrum of the nearby, thermally-emitting, isolated neutron star RX J0720.4-3125. The absorption line was detected performing detailed phase-resolved spectroscopy in 20 XMM-Newton observations, covering the period May 2000 - September 2012. The feature has an energy of ~750eV, an equivalent width of ~30eV, and it is significantly detected for only ~20% of the pulsar rotation. The absorption feature appears to be stable over the timespan covered by the observations. Given its strong dependence on the pulsar rotational phase and its narrow width, a plausible interpretation is in terms of resonant proton cyclotron absorption/scattering in a confined magnetic structure very close to the neutron star surface. The inferred field in such a magnetic loop is B_loop ~ 2 x 10^{14} G, a factor of ~7 higher than the surface dipolar magnetic field.
The thermal X-ray spectra of several isolated neutron stars display deviations from a pure blackbody. The accurate physical interpretation of these spectral features bears profound implications for our understanding of the atmospheric composition, ma gnetic field strength and topology, and equation of state of dense matter. With specific details varying from source to source, common explanations for the features have ranged from atomic transitions in the magnetized atmospheres or condensed surface, to cyclotron lines generated in a hot ionized layer near the surface. Here we quantitatively evaluate the X-ray spectral distortions induced by inhomogeneous temperature distributions of the neutron star surface. To this aim, we explore several surface temperature distributions, we simulate their corresponding general relativistic X-ray spectra (assuming an isotropic, blackbody emission), and fit the latter with a single blackbody model. We find that, in some cases, the presence of a spurious spectral line is required at a high significance level in order to obtain statistically acceptable fits, with central energy and equivalent width similar to the values typically observed. We also perform a fit to a specific object, RX J0806.4-4123, finding several surface temperature distributions able to model the observed spectrum. The explored effect is unlikely to work in all sources with detected lines, but in some cases it can indeed be responsible for the appearance of such lines. Our results enforce the idea that surface temperature anisotropy can be an important factor that should be considered and explored also in combination with more sophisticated emission models like atmospheres.
We present the results of simultaneous radio and X-ray observations of PSR J1819-1458. Our 94-ks XMM-Newton observation of the high magnetic field 5*10^13 G pulsar reveals a blackbody spectrum (kT~130 eV) with a broad absorption feature, possibly com posed of two lines at ~1.0 and ~1.3 keV. We performed a correlation analysis of the X-ray photons with radio pulses detected in 16.2 hours of simultaneous observations at 1-2 GHz with the Green Bank, Effelsberg, and Parkes telescopes, respectively. Both the detected X-ray photons and radio pulses appear to be randomly distributed in time. We find tentative evidence for a correlation between the detected radio pulses and X-ray photons on timescales of less than 10 pulsar spin periods, with the probability of this occurring by chance being 0.46%. This suggests that the physical process producing the radio pulses may also heat the polar-cap.
174 - Daniele Vigan`o 2013
Observations of magnetars and some of the high magnetic field pulsars have shown that their thermal luminosity is systematically higher than that of classical radio-pulsars, thus confirming the idea that magnetic fields are involved in their X-ray em ission. Here we present the results of 2D simulations of the fully-coupled evolution of temperature and magnetic field in neutron stars, including the state-of-the-art kinetic coefficients and, for the first time, the important effect of the Hall term. After gathering and thoroughly re-analysing in a consistent way all the best available data on isolated, thermally emitting neutron stars, we compare our theoretical models to a data sample of 40 sources. We find that our evolutionary models can explain the phenomenological diversity of magnetars, high-B radio-pulsars, and isolated nearby neutron stars by only varying their initial magnetic field, mass and envelope composition. Nearly all sources appear to follow the expectations of the standard theoretical models. Finally, we discuss the expected outburst rates and the evolutionary links between different classes. Our results constitute a major step towards the grand unification of the isolated neutron star zoo.
102 - Nanda Rea 2012
Among the many different classes of stellar objects, neutron stars provide a unique environment where we can test (at the same time) our understanding of matter with extreme density, temperature, and magnetic field. In particular, the properties of m atter under the influence of magnetic fields and the role of electromagnetism in physical processes are key areas of research in physics. However, despite decades of research, our limited knowledge on the physics of strong magnetic fields is clear: we only need to note that the strongest steady magnetic field achieved in terrestrial labs is some millions of Gauss, only thousands of times stronger than a common refrigerator magnet. In this general context, I will review here the state of the art of our research on the most magnetic objects in the Universe, a small sample of neutron stars called magnetars. The study of the large high-energy emission, and the flares from these strongly magnetized (~10^{15} Gauss) neutron stars is providing crucial information about the physics involved at these extremes conditions, and favoring us with many unexpected surprises.
High magnetic fields are a distinguishing feature of neutron stars and the existence of sources (the soft gamma repeaters and the anomalous X-ray pulsars) hosting an ultra-magnetized neutron star (or magnetar) has been recognized in the past few deca des. Magnetars are believed to be powered by magnetic energy and not by rotation, as with normal radio pulsars. Until recently, the radio quietness and magnetic fields typically above the quantum critical value (Bq~4.4x10^{13} G), were among the characterizing properties of magnetars. The recent discovery of radio pulsed emission from a few of them, and of a low dipolar magnetic field soft gamma repeater, weakened further the idea of a clean separation between normal pulsars and magnetars. In this Letter we show that radio emission from magnetars might be powered by rotational energy, similarly to what occurs in normal radio pulsars. The peculiar characteristics of magnetars radio emission should be traced in the complex magnetic geometry of these sources. Furthermore, we propose that magnetar radio activity or inactivity can be predicted from the knowledge of the stars rotational period, its time derivative and the quiescent X-ray luminosity.
54 - Nanda Rea 2011
We report on a 40ks Chandra observation of the TeV emitting high mass X-ray binary HESS J0632+057 performed in February 2011 during a high-state of X-ray and TeV activity. We have used the ACIS-S camera in Continuos Clocking mode to search for a poss ible X-ray pulsar in this system. Furthermore, we compare the emission of the source during this high state, with its X-ray properties during a low state of emission, caught by a 47ks XMM-Newton observation on September 2007. We did not find any periodic or quasi-periodic signal in any of the two observations. We derived an average pulsed fraction 3sigma upper limit for the presence of a periodic signal of ~35% and 25% during the low and high emission state, respectively (although this limit is strongly dependent on the frequency and the energy band). Using the best X-ray spectra derived to date for HESS J0632+057, we found evidence for a significant spectral change between the low and high X-ray emission states, with the absorption value and the photon index varying between Nh ~ 2.1-4.3x10^{21} cm^{-2} and Gamma ~ 1.18-1.61. At variance with what observed in other TeV binaries, it seems that in this source the higher the flux the softer the X-ray spectrum.
We describe our studies of the radio and high-energy properties of Rotating Radio Transients (RRATs). We find that the radio pulse intensity distributions are log-normal, with power-law tails evident in two cases. For the three RRATs with coverage ov er a wide range of frequency, the mean spectral index is -1.7pm0.1, roughly in the range of normal pulsars. We do not observe anomalous magnetar-like spectra for any RRATs. Our 94-ks XMM-Newton observation of the high magnetic field RRAT J1819-1458 reveals a blackbody spectrum (kT ~130 eV) with an unusual absorption feature at ~1 keV. We find no evidence for X-ray bursts or other X-ray variability. We performed a correlation analysis of the X-ray photons with radio pulses detected in concurrent observations with the Green Bank, Effelsberg, and Parkes telescopes. We find no evidence for any correlations between radio pulse emission and X-ray photons, perhaps suggesting that sporadicity is not due to variations in magnetospheric particle density but to changes in beaming or coherence.
(Abridged) We present a systematic fit of a model of resonant cyclotron scattering (RCS) to the X-ray data of ten magnetars, including canonical and transient anomalous X-ray pulsars (AXPs), and soft gamma repeaters (SGRs). In this scenario, non-ther mal magnetar spectra in the soft X-rays (i.e. below ~10 keV) result from resonant cyclotron scattering of the thermal surface emission by hot magnetospheric plasma. We find that this model can successfully account for the soft X-ray emission of magnetars, while using the same number of free parameters than the commonly used empirical blackbody plus power-law model. However, while the RCS model can alone reproduce the soft X-ray spectra of AXPs, the much harder spectra of SGRs below ~10 keV, requires the addition of a power-law component (the latter being the same component responsible for their hard X-ray emission). Although this model in its present form does not explain the hard X-ray emission of a few of these sources, we took this further component into account in our modeling not to overlook their contribution in the ~4-10 keV band. We find that the entire class of sources is characterized by magnetospheric plasma with a density which, at resonant radius, is about 3 orders of magnitudes higher than n_{GJ}, the Goldreich-Julian electron density. The inferred values of the intervening hydrogen column densities, are also in better agreement with more recent estimates inferred from the fit of single X-ray edges. For the entire sample of observations, we find indications for a correlation between the scattering depth and the electron thermal velocity, and the field strength. Moreover, in most transient anomalous X-ray pulsars the outburst state is characterized by a relatively high surface temperature which cools down during the decay.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا