ترغب بنشر مسار تعليمي؟ اضغط هنا

We have examined high accuracy radial velocities of Cepheids to determine the binary frequency. The data are largely from the CORAVEL spectrophotometer and the Moscow version, with a typical uncertainty of $leq1$~km~s$^{-1}$, and a time span from 1 t o 20 years. A systemic velocity was obtained by removing the pulsation component using a high order Fourier series. From this data we have developed a list of stars showing no orbital velocity larger than $pm1$~km~s$^{-1}$. The binary fraction was analyzed as a function of magnitude, and yields an apparent decrease in this fraction for fainter stars. We interpret this as incompleteness at fainter magnitudes, and derive the preferred binary fraction of $29pm8$% ( $20pm6$% per decade of orbital period) from the brightest 40 stars. Comparison of this fraction in this period range (1-20 years) implies a large fraction for the full period range. This is reasonable in that the high accuracy velocities are sensitive to the longer periods and smaller orbital velocity amplitudes in the period range sampled here. Thus the Cepheid velocity sample provides a sensitive detection in the period range between short period spectroscopic binaries and resolved companions. The recent identification of $delta$ Cep as a binary with very low amplitude and high eccentricity underscores the fact that the binary fractions we derive are lower limits, to which other low amplitude systems will probably be added. The mass ratio (q) distribution derived from ultraviolet observations of the secondary is consistent with a flat distribution for the applicable period range (1 to 20 years).
The galactic Cepheid S Muscae has recently been added to the important list of Cepheids linked to open clusters, in this case the sparse young cluster ASCC 69. Low-mass members of a young cluster are expected to have rapid rotation and X-ray activity , making X-ray emission an excellent way to discriminate them from old field stars. We have made an XMM-Newton observation centered on S Mus and identified (Table 1) a population of X-ray sources whose near-IR 2MASS counterparts lie at locations in the J, (J-K) color-magnitude diagram consistent with cluster membership at the distance of S Mus. Their median energy and X-ray luminosity are consistent with young cluster members as distinct from field stars. These strengthen the association of S Mus with the young cluster, making it a potential Leavitt Law (Period-Luminosity relation) calibrator.
We have obtained spectra of the W Sgr system with the STIS spectrograph on the Hubble Space Telescope. The spectra resolve the system into a distant companion B which is the hottest star in the system and the spectroscopic binary (A = Aa + Ab). A and B are separated by 0.16. We have extracted the spectra of both of these. We see no flux in the Aa + Ab spectrum which cannot be accounted for by the Cepheid, and put an upper limit on the spectral type and mass of the companion Ab of F5 V and $leq$1.4Msun. Using the orbit from HST FGS measurements from Benedict, et al., this results in an upper limit to the mass of the Cepheid of $leq$5.4Msun. We also discuss two possible distant companions. Based on photometry from the 2MASS Point Source Catalog, they are not physical companions of the W Sgr system.
Polaris, the nearest and brightest classical Cepheid, is a single-lined spectroscopic binary with an orbital period of 30 years. Using the High Resolution Channel of the Advanced Camera for Surveys onboard the Hubble Space Telescope (HST) at a wavele ngth of ~2255AA, we have directly detected the faint companion at a separation of 0farcs17. A second HST observation 1.04 yr later confirms orbital motion in a retrograde direction. By combining our two measures with the spectroscopic orbit of Kamper and an analysis of the Hipparcos and FK5 proper motions by Wielen et al., we find a mass for Polaris Aa of 4.5^{+2.2}_{-1.4} M_odot--the first purely dynamical mass determined for any Cepheid. For the faint companion Polaris Ab we find a dynamical mass of 1.26^{+0.14}_{-0.07} M_odot, consistent with an inferred spectral type of F6 V and with the flux difference of 5.4 mag observed at 2255AA. The magnitude difference at the V band is estimated to be 7.2 mag. Continued HST observations will significantly reduce the mass errors, which are presently still too large to provide critical constraints on the roles of convective overshoot, mass loss, rotation, and opacities in the evolution of intermediate-mass stars. Our astrometry, combined with two centuries of archival measurements, also confirms that the well-known, more distant (18) visual companion, Polaris B, has a nearly common proper motion with that of the Aa,Ab pair. This is consistent with orbital motion in a long-period bound system. The ultraviolet brightness of Polaris B is in accordance with its known F3 V spectral type if it has the same distance as Polaris Aa,Ab.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا