ترغب بنشر مسار تعليمي؟ اضغط هنا

Massive Star Multiplicity: The Cepheid W Sgr

62   0   0.0 ( 0 )
 نشر من قبل Nancy Remage Evans
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have obtained spectra of the W Sgr system with the STIS spectrograph on the Hubble Space Telescope. The spectra resolve the system into a distant companion B which is the hottest star in the system and the spectroscopic binary (A = Aa + Ab). A and B are separated by 0.16. We have extracted the spectra of both of these. We see no flux in the Aa + Ab spectrum which cannot be accounted for by the Cepheid, and put an upper limit on the spectral type and mass of the companion Ab of F5 V and $leq$1.4Msun. Using the orbit from HST FGS measurements from Benedict, et al., this results in an upper limit to the mass of the Cepheid of $leq$5.4Msun. We also discuss two possible distant companions. Based on photometry from the 2MASS Point Source Catalog, they are not physical companions of the W Sgr system.

قيم البحث

اقرأ أيضاً

V350 Sgr is a classical Cepheid suitable for mass determination. It has a hot companion which is prominent in the ultraviolet and which is not itself a binary. We have obtained two high resolution echelle spectra of the companion at orbital velocity maximum and minimum with the Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS) in the 1320 to 1510 AA/ region. By cross-correlating these spectra we obtained the orbital velocity amplitude of the companion with an uncertainty in the companion amplitude of 1.9 km sec$^{-1}$. This provides a mass ratio of the Cepheid to the companion of 2.1. The ultraviolet energy distribution of the companion provides the mass of the companion, yielding a Cepheid mass of 5.2 $pm$ 0.3 M$_odot$. This mass requires some combination of moderate main sequence core convective overshoot and rotation to match evolutionary tracks.
We investigate the formation and early evolution and fragmentation of an accretion disk around a forming massive protostar. We use a grid-based self-gravity-radiation-hydrodynamics code including a sub-grid module for stellar and dust evolution. On p urpose, we do not use sink particles to allow for all paths of fragment formation and destruction, but instead keeping the spatial grid resolution high enough to properly resolve the physical length scales of the problem. We use a 3D grid in spherical coordinates with a logarithmic scaling in the radial direction and cosine scaling in the polar direction. Because of that, roughly 25% of the total number of grid cells, corresponding to $sim$ 26 million grid cells, are used to model the disk physics. They constitute the highest resolution simulations performed up to now on disk fragmentation around a forming massive star with the physics considered here. We study the convergence of our results by performing the same simulation for 5 different resolutions. We start from the collapse of a molecular cloud; a massive (proto)star is formed in its center, surrounded by a fragmenting Keplerian-like accretion disk with spiral arms. The fragments have masses of $sim 1 M_odot$, and their continuous interactions with the disk, spiral arms and other fragments results in eccentric orbits. Fragments form hydrostatic cores, surrounded by secondary disks with spiral arms that also produce new fragments. We identified several mechanisms of fragment formation, interaction and destruction. Central temperatures of the fragments can reach the hydrogen dissociation limit, form second Larson cores and evolve into companion stars. Based on this, we study the multiplicity predicted by the simulations and find $sim 6$ companions at different distances from the primary: from possible spectroscopic multiples, to companions at distances between 1000 and 2000 au.
Optical-infrared interferometry can provide direct geometrical measurements of the radii of Cepheids and/or reveal unknown binary companions of these stars. Such information is of great importance for a proper calibration of Period-Luminosity relatio ns and for determining binary fraction among Cepheids. We observed the Cepheid X Sgr with VLTI/AMBER in order to confirm or disprove the presence of the hypothesized binary companion and to directly measure the mean stellar radius, possibly detecting its variation along the pulsation cycle. From AMBER observations in MR mode we performed a binary model fitting on the closure phase and a limb-darkened model fitting on the visibility. Our analysis indicates the presence of a point-like companion at a separation of 10.7 mas and 5.6 magK fainter than the primary, whose flux and position are sharply constrained by the data. The radius pulsation is not detected, whereas the average limb-darkened diameter results to be 1.48+/-0.08 mas, corresponding to 53+/-3 R_sun at a distance of 333.3 pc.
Observations of massive stars in young open clusters (< ~8 Myr) have shown that a majority of them are in binary systems, most of which will interact during their life. Populations of massive stars older than ~20 Myr allow us to probe the outcome of such interactions after many systems have experienced mass and angular momentum transfer. Using multi-epoch integral-field spectroscopy, we investigate the multiplicity properties of the massive-star population in NGC 330 (~40 Myr) in the Small Magellanic Cloud to search for imprints of stellar evolution on the multiplicity properties. From six epochs of VLT/MUSE observations supported by adaptive optics we extract spectra and measure radial velocities for stars brighter than F814W = 19. We identify single-lined spectroscopic binaries through significant RV variability as well as double-lined spectroscopic binaries, and quantify the observational biases for binary detection. The observed spectroscopic binary fraction is 13.2+/-2.0 %. Considering period and mass ratio ranges from log(P)=0.15-3.5, and q = 0.1-1.0, and a representative set of orbital parameter distributions, we find a bias-corrected close binary fraction of 34 +8 -7 %. This seems to decline for the fainter stars, which indicates either that the close binary fraction drops in the B-type domain, or that the period distribution becomes more heavily weighted towards longer orbital periods. Both fractions vary strongly in different regions of the color-magnitude diagram which probably reveals the imprint of the binary history of different groups of stars. We provide the first homogeneous RV study of a large sample of B-type stars at a low metallicity. The overall bias-corrected close binary fraction of B stars in NGC 330 is lower than the one reported for younger Galactic and LMC clusters. More data are needed to establish whether this result from an age or a metallicty effect.
188 - Sarah Kendrew 2013
We present near-infrared spectroscopy and 1 mm line and continuum observations of a recently identified site of high mass star formation likely to be located in the Central Molecular Zone near Sgr C. Located on the outskirts of the massive evolved HI I region associated with Sgr C, the area is characterized by an Extended Green Object measuring ~10 in size (0.4 pc), whose observational characteristics suggest the presence of an embedded massive protostar driving an outflow. Our data confirm that early-stage star formation is taking place on the periphery of the Sgr C HII region, with detections of two protostellar cores and several knots of H2 and Brackett gamma emission alongside a previously detected compact radio source. We calculate the cores joint mass to be ~10^3 Msun, with column densities of 1-2 x 10^24 cm-2. We show the host molecular cloud to hold ~10^5 Msun of gas and dust with temperatures and column densities favourable for massive star formation to occur, however, there is no evidence of star formation outside of the EGO, indicating that the cloud is predominantly quiescent. Given its mass, density, and temperature, the cloud is comparable to other remarkable non-star-forming clouds such as G0.253 in the Eastern CMZ.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا